Academic literature on the topic 'Magnetic and gravity data'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic and gravity data.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic and gravity data"

1

Maus, Stefan. "Variogram analysis of magnetic and gravity data." GEOPHYSICS 64, no. 3 (May 1999): 776–84. http://dx.doi.org/10.1190/1.1444587.

Full text
Abstract:
Model variograms describe the space domain statistics of magnetic and gravity data. Variogram analysis can be used to map intensity, depth, and scaling exponent (self‐correlation) of source. In previous statistical methods the measured data were gridded and transformed to the wavenumber domain; then their power spectrum was analyzed using a spectral model. To avoid the loss and distortion of information during gridding and wavenumber domain transform, I transform the spectral model to the space domain instead. Variograms are the appropriate space domain counterparts of magnetic and gravity power spectra. The variogram of the field above a self‐similar half‐space model is governed by three parameters: intensity, depth, and scaling exponent. These source parameters can be mapped with high resolution and accuracy by fitting model variograms directly to magnetic and gravity line data variograms.
APA, Harvard, Vancouver, ISO, and other styles
2

Hildenbrand, T. G., R. C. Jachens, and R. W. Simpson. "Insights on lithospheric structures within the stable craton U.S.A., based on magnetic and gravity data." Global Tectonics and Metallogeny 6, no. 2 (July 31, 1996): 113–17. http://dx.doi.org/10.1127/gtm/6/1996/113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sutasoma, M., A. Susilo, Sunaryo, E. A. Suryo, S. Minardi, and R. H. D. Cahyo. "Comparison between the magnetic method data of pseudogravity transformation with gravity anomaly data from satellite imagery in the surrounding of the Sutami Dam to identify subsurface formations." Journal of Physics: Conference Series 2165, no. 1 (January 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2165/1/012017.

Full text
Abstract:
Abstract Research has been carried out to determine the subsurface formations in the Sutami dam area and its surroundings using the magnetic method of pseudogravity transformation and satellite imagery gravity anomaly data. This study aims to compare the subsurface formations in the area around the Sutami Dam between the data of the pseodu-gravity transformation magnetic method and the gravity anomaly data of satellite imagery. Data acquisition using the pseudogravity magnetic transformation method was carried out using the Proton Precession Magnetometer (PPM) Scientrex Model G-8 with a spacing of 300 meters. Satellite imagery gravity anomaly data was taken from the Gravity Model Plus (GGM plus) with a spacing of 220 meters. The radius of geomagnetic data acquisition was 15 km. The number of data for the magnetic method of pseudogravity transformation was 1,372 measurement points and satellite imagery gravity anomaly data was 3,000 measurement points. The results showed that the rock formations from the magnetic method of pseudogravity transformation and satellite gravity anomaly data were compatible. There are 4 types of subsurface formations in the study area, namely soil (Δρ = 1.6 g/cm3), Butak Volcanic Product (Δρ = 2 g/cm3), Tuff Deposit (Δρ = 2.1 g/cm3) and Campurdarat Formation (Δρ = 2.6 g/cm3).
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiong. "Terracing gravity and magnetic data using edge-preserving smoothing filters." GEOPHYSICS 81, no. 2 (March 1, 2016): G41—G47. http://dx.doi.org/10.1190/geo2015-0409.1.

Full text
Abstract:
One major purpose of gravity and magnetic transformations is to produce a result that can be related to geology. The terracing operator achieves this purpose by converting gravity and magnetic data into a geologic map-like field wherein homogeneous domains with sharp domain boundaries are defined. Edge-preserving smoothing filters developed in image processing have the same capability. I have applied the Kuwahara, mean of least variance, and symmetric nearest neighbor filters to gravity and magnetic data. Synthetic and field data examples suggest that these edge-preserving smoothing filters produce terraced effects cleaner than the terracing operator, and the mean of least variance filter often produces the cleanest and sharpest result.
APA, Harvard, Vancouver, ISO, and other styles
5

Le Magoarou, Camille, Katja Hirsch, Clement Fleury, Remy Martin, Johana Ramirez-Bernal, and Philip Ball. "Integration of gravity, magnetic, and seismic data for subsalt modeling in the Northern Red Sea." Interpretation 9, no. 2 (April 21, 2021): T507—T521. http://dx.doi.org/10.1190/int-2019-0232.1.

Full text
Abstract:
Rifts and rifted passive margins are often associated with thick evaporite layers, which challenge seismic reflection imaging in the subsalt domain. This makes understanding the basin evolution and crustal architecture difficult. An integrative, multidisciplinary workflow has been developed using the exploration well, gravity and magnetics data, together with seismic reflection and refraction data sets to build a comprehensive 3D subsurface model of the Egyptian Red Sea. Using a 2D iterative workflow first, we have constructed cross sections using the available well penetrations and seismic refraction data as preliminary constraints. The 2D forward model uses regional gravity and magnetic data to investigate the regional crustal structure. The final models are refined using enhanced gravity and magnetic data and geologic interpretations. This process reduces uncertainties in basement interpretation and magmatic body identification. Euler depth estimates are used to point out the edges of high-susceptibility bodies. We achieved further refinement by initiating a 3D gravity inversion. The resultant 3D gravity model increases precision in crustal geometries and lateral density variations within the crust and the presalt sediments. Along the Egyptian margin, where data inputs are more robust, basement lows are observed and interpreted as basins. Basement lows correspond with thin crust ([Formula: see text]), indicating that the evolution of these basins is closely related to the thinning or necking process. In fact, the Egyptian Northern Red Sea is typified by dramatic crustal thinning or necking that is occurring over very short distances of approximately 30 km, very proximal to the present-day coastline. The integrated 2D and 3D modeling reveals the presence of high-density magnetic bodies that are located along the margin. The location of the present-day Zabargad transform fault zone is very well delineated in the computed crustal thickness maps, suggesting that it is associated with thin crust and shallow mantle.
APA, Harvard, Vancouver, ISO, and other styles
6

Keating, Pierre. "Density mapping from gravity data using the Walsh transform." GEOPHYSICS 57, no. 4 (April 1992): 637–42. http://dx.doi.org/10.1190/1.1443276.

Full text
Abstract:
One of the main purposes of geophysical mapping is the identification of units that can be related to known geology. On a regional scale, aeromagnetic and gravity maps are the most useful tools presently available, although other techniques such as conductivity mapping (Palacky, 1986) or remote sensing (Watson, 1985) are very helpful in locating lithologic boundaries. Interpretation now makes extensive use of enhanced maps: susceptibility maps for magnetic data, density maps for gravity data, first and second vertical derivative, and horizontal gradient maps for both types of data. The objective of susceptibility and density mapping is to transform the potential field data into a physical property map. For physical property mapping, some hypotheses and simplifications are made. The earth model is assumed to consist of right rectangular prisms of finite (gravity) or infinite (magnetics) depth extent. For ease of data processing, the potential field is interpolated onto a regular rectangular array, so that each point in the array corresponds to one prism.
APA, Harvard, Vancouver, ISO, and other styles
7

RAVI KUMAR, Sistla, and Shaik Kareemunnisa BEGUM. "Interpretation of gravity and magnetic data in the Central Indian Ocean." Contributions to Geophysics and Geodesy 52, no. 3 (September 30, 2022): 359–93. http://dx.doi.org/10.31577/congeo.2022.52.3.2.

Full text
Abstract:
The crustal deformation in the Central Indian Ocean is due to major undulations of the oceanic crust, longitudinal fracture zones, and sea-floor topography. The gravity and magnetic data along with six long profiles across the Central Indian Ocean Basin on W–E tracks between 6°S – 1°S latitudes and 77°E – 90°E longitudes are used to study this deformation. It has been observed that the crustal depths obtained from spectral analysis of gravity and magnetic data are in good agreement with 2D forward gravity modelling results which supports seismic results. The computed seismic velocities for the sediments are 2.0 – 5.7 km/s and 6.1 – 7.7 km/s for the oceanic igneous layer and 8.3 – 8.5 km/s for the oceanic upper mantle are used to determine the densities of oceanic crust with the velocity-density relationship. The average basement depths for all the gravity and magnetic profiles are obtained as ~5 km with deviations of about 1 – 2 km from the mean and for the deeper marker, the crustal depths vary from 9 km to 12 km. In the case of curie isotherm, the crustal depths vary from 9 km to 12 km for all magnetic profiles which may indicate deformation. The crustal top depths vary in the range of 3.5 – 8 km (3.2 – 6 km) and the bottom depth varies in the range of 8.2 – 13.5 km (8.5 – 13 km) for magnetic field anomaly data using the spectral method (the Werner method). The crustal top depths vary in the range of 3.6 – 6.5 km and the bottom depth varies in the range of 7.5 – 11.5 km for free-air anomaly data using the spectral method. The above depths are almost correlated with interpreted 2D gravity modelling and available Seismic results.
APA, Harvard, Vancouver, ISO, and other styles
8

Shamsipour, Pejman, Denis Marcotte, and Michel Chouteau. "3D stochastic joint inversion of gravity and magnetic data." Journal of Applied Geophysics 79 (April 2012): 27–37. http://dx.doi.org/10.1016/j.jappgeo.2011.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keating, Pierre B. "Weighted Euler deconvolution of gravity data." GEOPHYSICS 63, no. 5 (September 1998): 1595–603. http://dx.doi.org/10.1190/1.1444456.

Full text
Abstract:
Euler deconvolution is used for rapid interpretation of magnetic and gravity data. It is particularly good at delineating contacts and rapid depth estimation. The quality of the depth estimation depends mostly on the choice of the proper structural index and adequate sampling of the data. The structural index is a function of the geometry of the causative bodies. For gravity surveys, station distribution is in general irregular, and the gravity field is aliased. This results in erroneous depth estimates. By weighting the Euler equations by an error function proportional to station accuracies and the interstation distance, it is possible to reject solutions resulting from aliasing of the field and less accurate measurements. The technique is demonstrated on Bouguer anomaly data from the Charlevoix region in eastern Canada.
APA, Harvard, Vancouver, ISO, and other styles
10

Cook, Frederick A., John L. Varsek, and Jeffrey B. Thurston. "Tectonic significance of gravity and magnetic variations along the Lithoprobe Southern Canadian Cordillera Transect." Canadian Journal of Earth Sciences 32, no. 10 (October 1, 1995): 1584–610. http://dx.doi.org/10.1139/e95-128.

Full text
Abstract:
Correlation of potential field data to regional geological features within the Lithoprobe southern Canadian Cordillera transect corridor allows characterization of anomaly patterns according to their likely sources. Long-wavelength Bouguer gravity anomalies are attributed to isostatic effects of topography, which in most areas is compensated. Two notable exceptions occur: in the Foreland belt a large positive isostatic anomaly is likely due to mechanical support of topography formed as Cordilleran thrust sheets were emplaced over the thick craton, and on the west coast, isostatic anomalies are related to active subduction. Long-wavelength magnetic anomalies in the Foreland belt are associated with cratonal basement beneath the thrust sheets, and these can be followed westward to near the Omineca belt. A prominent positive magnetic anomaly along the western Coast belt is probably associated with mafic rocks generated during subduction. Elsewhere, relatively short wavelength gravity and magnetic anomalies correlate well with either plutons (both gravity and magnetic), volcanics (primarily magnetics), or faults (magnetics) within the region of accreted terranes.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetic and gravity data"

1

Mohammadi, Soroor. "Processing and Modeling of Gravity, Magnetic and Electromagnetic Data in the Falkenberg Area, Sweden." Thesis, Uppsala universitet, Geofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232714.

Full text
Abstract:
Falkenberg area is located in southwest Sweden formed in the Sveconorwegian orogen and contains an extremely complex geological structure. Multiple geophysical datasets have been acquired and together with available petrophysical information, models corresponding to the subsurface geological structures were generated. The collected data comprise ground magnetic, AMT (Audio Magnetotelluric) and RMT (Radio Magnetotelluric) data. The available airborne magnetic and ground gravity data acquired by the Geological Survey of Sweden (SGU) as well as the reflection seismic section from a study made by Uppsala University further aids in obtaining substantially improved interpretation of the geometry of the structures along the AMT profile. The principal objective of this profile was to delineate and map the possible deformation zone crossed by the profile. The AMT study was expected to complement existing geophysical data and improve existing interpretations. The Ullared deformation zone contains decompressed eclogite facies rocks. The presented results were obtained by comparison of different geophysical methods along the profile. The susceptibility model and resistivity model show that eclogites have higher resistivity and susceptibility than the surrounding structures. However use of the Occam type of inversion on the AMT data, makes the resistivity model smoother than the susceptibility model and as a results it is difficult to estimate the dip of the structures. The AMT profile and the seismic section show the same dip direction (NE) for the eclogite bearing structures although due to the smoothing in the AMT model the dips seen in the seismic section cannot be recovered in the resistivity model.
APA, Harvard, Vancouver, ISO, and other styles
2

Szwillus, Wolfgang [Verfasser]. "Lithospheric structure from forward and inverse modeling of satellite gravity and magnetic data / Wolfgang Szwillus." Kiel : Universitätsbibliothek Kiel, 2019. http://d-nb.info/1190644797/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nxantsiya, Zusakhe. "A study of the southwestern Karoo basin in South Africa using magnetic and gravity data." Thesis, University of Fort Hare, 2017. http://hdl.handle.net/10353/4748.

Full text
Abstract:
The early efforts of Booth, Johnson, Rubidge, Catuneanu, de Wit, Chevallier, Stankiewicz, Weckmann and many other scientists in studying the Karoo Supergroup has led to comprehensive documentation of the geology on the main Karoo Basin with regards to understanding the age, sedimentology, sedimentary facies and depositional environments. In spite of these studies, the subsurface structure, variations in thickness of various formations in large parts of the basin, the location and orientation of subsurface dolerite intrusions, and the depth to magnetic and gravity sources remains poorly documented. A geological study with the aid of geophysical techniques, magnetic and gravity, was conducted in the southwestern part of the main Karoo Basin. The objectives of the study were to construct numerous models of the main basin that image the crust to a depth of 45 km, to determine thicknesses of various formations, to relate observed geophysical anomalies with geological bodies and lineaments, to estimate the depth of existing anomalous bodies, to determine densities and porosity of various formations, as well as to determine the mineralogy of various rocks in the Karoo Basin.
APA, Harvard, Vancouver, ISO, and other styles
4

Saliaris, Ioannis R. "Real-Time data acquisition and processing of the Magnetic, Angular Rate and Gravity (MARG) sensor /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FSaliaris.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering and M.S. in Systems Engineering)--Naval Postgraduate School, June 2004.
Thesis advisor(s): Xiaoping Yun. Includes bibliographical references (p. 59-60). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
5

Harbi, Hussein M. "2-D MODELING OF SOUTHERN OHIO BASED ON MAGNETIC FIELD INTENSITY, GRAVITY FILED INTENSITY AND WELL LOG DATA." University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1125523809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Georgiopoulos, Andreas Xenophon. "Models for the upper crust of the Chaleston, South Carolina, seismic zone based on gravity and magnetic data." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/25861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fidler, Michael L. "Three dimensional digital analysis of 2,500 square kilometers of gravity and magnetic survey data, Bellefontaine Outlier area, Ohio /." Columbus, Ohio : Ohio State University, 2003. http://hdl.handle.net/1811/6110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brumby, Michael M. "Modelling of gravity and magnetic data to aid the interpretation of a seismic section from the onshore Canning Basin, northwestern Australia /." Title page, table of contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09SB/09sbb893.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rodrigues, Rafael Saraiva. "Evid?ncias da heran?a geotect?nica pr?-cambriana na gera??o da Bacia Potiguar: um estudo geof?sico multdisciplinar." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18833.

Full text
Abstract:
Made available in DSpace on 2015-03-13T17:08:36Z (GMT). No. of bitstreams: 1 RafaelSR_DISSERT_.pdf: 4378179 bytes, checksum: dc5658a221c8891102c9990af4393c19 (MD5) Previous issue date: 2013-04-13
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The 3D gravity modeling of the Potiguar rift basin consisted of a digital processing of gravity and aeromagnetic data, subsidized by the results of Euler deconvolution of gravity and magnetic data and the interpretation of seismic lines and wells descriptions. The gravity database is a compilation of independent geophysical surveys conducted by several universities, research institutions and governmental agencies. The aeromagnetic data are from the Bacia Potiguar and Plataforma Continental do Nordeste projects, obtained from the Brazilian Petroleum Agency (ANP). The solutions of the Euler Deconvolution allowed the analysis of the behavior of the rift main limits. While the integrated interpretation of seismic lines provided the delimitating horizons of the sedimentary formations and the basement top. The integration of these data allowed a 3D gravity modeling of basement topography, allowing the identification of a series of internal structures of the Potiguar rift, as well intra-basement structures without the gravity effect of the rift. The proposed inversion procedure of the gravity data allowed to identify the main structural features of the Potiguar rift, elongated in the NE-SW direction, and its southern and eastern faulted edges, where the sedimentary infill reachs thicknesses up to 5500 m. The southern boundary is marked by the Apodi and Baixa Grande faults. These faults seem to be a single NW-SE oriented fault with a strong bend to NE-SW direction. In addition, the eastern boundary of the rift is conditioned by the NE-SW trending Carnaubais fault system. It was also observed NW-SE oriented faults, which acted as transfer faults to the extensional efforts during the basin formation. In the central part of the residual anomaly map without the gravity effect of the rift stands out a NW-SE trending gravity high, corresponding to the Or?s-Jaguaribe belt lithotypes. We also observe a gravity maximum parallel to the Carnaubais fault system. This anomaly is aligned to the eastern limit of the rift and reflects the contact of different crustal blocks, limited by the eastern ward counterpart of the Portalegre Shear Zone
A modelagem gravim?trica 3D do rifte da Bacia Potiguar, apresentada neste trabalho, constituiu de um processamento digital de dados gravim?tricos e aeromagn?ticos, subsidiados pelos resultados da Deconvolu??o de Euler de dados gravim?tricos e magn?ticos e pela interpreta??o de linhas s?smicas e descri??es de po?os. O banco de dados gravim?trico ? proveniente de um trabalho de compila??o de levantamentos geof?sicos independentes realizados por diversas universidades, institui??es de pesquisa e ?rg?os governamentais. Os dados aeromagn?ticos s?o proveniente dos projetos Bacia Potiguar e Plataforma Continental do Nordeste, obtidos junto ? Ag?ncia Nacional do Petr?leo, G?s Natural e Biocombust?veis (ANP). As solu??es da Deconvolu??o de Euler possibilitaram a an?lise do comportamento dos principais limites do rifte, enquanto que a interpreta??o integrada das linhas s?smicas propiciou a delimita??o dos relevos dos horizontes da base das forma??es sedimentares e do topo do embasamento do Rifte Potiguar. A integra??o desses dados permitiu uma modelagem gravim?trica 3D do relevo do embasamento da bacia, possibilitando a identifica??o de uma s?rie de estruturas do arcabou?o estrutural do Rifte Potiguar e do embasamento cristalino sem o efeito gravim?trico do rifte. Com o procedimento de invers?o dos dados gravim?tricos, foi poss?vel identificar as principais fei??es estruturais do rifte da Bacia Potiguar, alongadas na dire??o NE-SW, bem como suas bordas falhadas nos limites Sul e Leste do rifte, onde o pacote sedimentar atinge espessuras superiores a 5500 m. O limite Sul ? marcado pelas falhas de Apodi e Baixa Grande, aparentando tratar-se de uma ?nica falha de dire??o NW-SE, com forte inflex?o para NE-SW. Observa-se ainda o limite Leste do rifte condicionado pelo Sistema de Falha Carnaubais de dire??o preferencial NE-SW. Observa-se ainda falhas de dire??o NW-SE, que atuaram como falhas de transfer?ncia aos esfor?os distensionais de forma??o da bacia. No mapa de anomalias residuais do embasamento cristalino sem o efeito gravim?trico do rifte destaca-se, na sua parte central, um alto gravim?trico de dire??o NW-SE, correspondendo a litotipos da Faixa Or?s-Jaguaribe. Observa-se ainda um m?ximo gravim?trico paralelo ao Sistema de Falhas de Carnaubais. Tal anomalia encontra-se alinhada ao limite Leste do rifte e reflete o contato de blocos crustais distintos, limitados pela continua??o Nordeste da Zona de Cisalhamento Portalegre
APA, Harvard, Vancouver, ISO, and other styles
10

Strydom, Migael. "Magnetic vortices in gauge/gravity duality." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-172099.

Full text
Abstract:
Wir untersuchen stark gekoppelte Phänomene unter Verwendung der Dualität zwischen Eich- und Gravitationstheorien. Dabei liegt ein besonderer Fokus einerseits auf Vortex Lösungen, die von einem magnetischem Feld verursacht werden, und andererseits auf zeitabhängigen Problemen in holographischen Modellen. Das wichtigste Ergebnis ist die Entdeckung eines unerwarteten Effektes in einem einfachen holografischen Modell: ein starkes nicht abelsches magnetisches Feld verursacht die Entstehung eines Grundzustandes in der Form eines dreieckigen Gitters von Vortices. Die Dualität zwischen Eich- und Gravitationstheorien ist ein mächtiges Werkzeug welches bereits verwendet wurde um stark gekoppelte Systeme vom Quark-Gluonen Plasma in Teilchenbeschleunigern bis hin zu Festkörpertheorien zu beschreiben. Die wichtigste Idee ist dabei die der Dualität: Eine stark gekoppelte Quantenfeldtheorie kann untersucht werden, indem man die Eigenschaften eines aus den Einsteinschen Feldgleichungen folgenden Gravitations-Hintergrundes bestimmt. Eine der Gravitationstheorien, die in dieser Arbeit behandelt werden, ist eine Einstein--Yang--Mills Theorie in einem AdS--Schwarzschild Hintergrund mit SU(2)-Eichsymmetrie. Der Ansatz für das Eichfeld ist so gewählt, dass die zugehörige Quantenfeldtheorie einem externen Magnetfeld ausgesetzt ist. Oberhalb eines kritischen Magnetfeldes wird die Konfiguration instabil und zeigt einen Phasenübergang zu einem Supraleiter. Die Instabilität wird mit zwei Ansätzen untersucht. Zum einen werden Fluktuationen des Hintergrunds betrachtet und die Quasinormalmoden analysiert. Zum anderen zeigt die numerische Analyse der Bewegungsgleichungen, dass das effektive Schrödinger-Potential mit stärker werdendem Magnetfeld sich so lange verändert, bis ein gebundener Zustand möglich wird. Der sich ergebende supraleitende Grundzustand ist durch ein dreieckiges Vortexgitter gegeben, wie eine störungstheoretische Entwicklung über einem kleinen Parameter proportional zur Größe des Kondensats zeigt. Zur Bestimmung des energetisch bevorzugten Zustands wird mithilfe der holographischen Übersetzungsvorschrift die Gesamtenergie verschiedener Lösungen berechnet. Hierfür wird die Lösung der Bewegungsgleichungen zur dritten Ordnung in oben genanntem Parameter berechnet. Zusätzlich wird gezeigt, dass dieses Ergebnis auch für den Fall einer AdS--hard wall Geometrie gilt, also einer Feldtheorie mit Confinement. Als nächstes erweitern wir das einfache Gravitationsmodell um ein chemisches Potential und wiederholen die Untersuchung. Sind das chemische Potential, das magnetische Feld oder beide groß genug, so befindet sich das System in einer supraleitenden Phase. Wir berechnen das Phasendiagramm des Systems numerisch. Der Grundzustand der supraleitenden Phase nahe dem Phasenübergang ist ein dreieckiges Vortexgitter, wobei der Gitterabstand nur von der Stärke des magnetischen Feldes abhängt. Die Relevanz dieser Ergebnisse wird im Zusammenhang mit inhomogenen Grundzuständen in holographischen Supraleitern diskutiert, einem Themengebiet welches in letzter Zeit viel Interesse auf sich gezogen hat. Die erhaltenen Resultate sind nicht nur aufgrund der vorher unbekannten inhomogenen Lösung der Gravitationstheorie mit Schwarzem Loch neuartig. Es ist auch interessant, dass ein großes magnetisches Feld die Vortexstruktur im Grundzustand induziert anstatt sie zu unterdrücken. Des Weiteren untersuchen wir zeitabhängige Phänomene in einer holographischen Erweiterung des Kondomodells. Letzteres beschreibt ein einfaches Modell in der Festkörperphysik, in welchem eine magnetische Verunreinigung stark an ein Elektronenreservoir koppelt. Die holographische Beschreibung erfordert Techniken der numerischen Relativitätstheorie und erlaubt uns die Entwicklung des Systems nach einem plötzlichen Sprung in der Kopplungskonstante zu simulieren. Diese Doktorarbeit basiert auf Ergebnissen, die der Autor während des Studiums am Max-Planck-Institut-für-Physik in München, Deutschland unter der Betreuung von PD Dr. J. K. Erdmenger von August 2011 bis Mai 2014 erreicht hat. Die relevanten Veröffentlichungen sind: [1] M. Ammon, J. Erdmenger, P. Kerner, and M. Strydom, “Black Hole Instability Induced by a Magnetic Field,” Phys.Lett. B706 (2011) 94–99, arXiv:1106.4551 [hep-th], [2] Y.-Y. Bu, J. Erdmenger, J. P. Shock, and M. Strydom, “Magnetic field induced lattice ground states from holography,” JHEP 1303 (2013) 165, arXiv:1210.6669 [hep-th].
We study strongly-coupled phenomena using gauge/gravity duality, with a particular focus on vortex solutions produced by magnetic field and time-dependent problems in holographic models. The main result is the discovery of a counter-intuitive effect where a strong non-abelian magnetic field induces the formation of a triangular vortex lattice ground state in a simple holographic model. Gauge/gravity duality is a powerful theoretical tool that has been used to study strongly-coupled systems ranging from the quark-gluon plasma produced at particle colliders to condensed matter theories. The most important idea is that of duality: a strongly coupled quantum field theory can be studied by investigating the properties of a particular gravity background described by Einstein's equations. One gravity background we study in this dissertation is AdS--Schwarzschild with an SU(2) gauge field. We switch on the gauge field component that gives the field theory an external magnetic field. When the magnetic field is above a critical value, we find that the system is unstable, indicating a superconducting phase transition. We find the instability in two ways. Firstly, we do a quasinormal mode analysis, studying fluctuations about the background. Secondly, we rewrite the equations in Schrödinger form and numerically find that, as the magnetic field is increased, the potential deepens until it is capable of supporting a bound state. Next we show that the resulting superconducting ground state is a triangular vortex lattice. This is done by performing a perturbative expansion in a small parameter proportional to the condensate size. After solving the equations to third order, we use the holographic dictionary to calculate the total energy of different lattice solutions and identify the minimum energy state. In addition, we show that the result holds in an AdS--hard wall model as well, which is dual to a confining theory. Next we extend the simple gravity model to include a chemical potential and repeat the analysis. When the chemical potential, magnetic field or both are large, the system is in a superconducting phase. We calculate the precise phase diagram numerically. The ground state in the superconducting phase near the phase transition line is shown to be a triangular vortex lattice with lattice spacing depending only on the magnetic field strength. We comment on the relevance of the results to the study of inhomogeneous ground states in holographic superconductors, a topic in which there has been much interest recently. Our results are novel not only because of the previously unknown inhomogeneous black hole solution, but also because of the effect of a large magnetic field inducing rather than inhibiting the vortex lattice ground state in a holographic model. We also study time-dependent phenomena in a holographic generalisation of the Kondo model, a simple condensed matter model of a magnetic impurity coupled strongly to a sea of electrons. This requires techniques from numerical relativity and allows us to determine the response of the system to a quench in the coupling. This dissertation is based on work the author did during a PhD fellowship under the supervision of PD Dr. J. K. Erdmenger at the Max-Planck-Institut für Physik in Munich, Germany from August 2011 to May 2014. The relevant publications are: [1] M. Ammon, J. Erdmenger, P. Kerner, and M. Strydom, “Black Hole Instability Induced by a Magnetic Field,” Phys.Lett. B706 (2011) 94–99, arXiv:1106.4551 [hep-th], [2] Y.-Y. Bu, J. Erdmenger, J. P. Shock, and M. Strydom, “Magnetic field induced lattice ground states from holography,” JHEP 1303 (2013) 165, arXiv:1210.6669 [hep-th].
Ons bestudeer sterk gekoppelde fenomene deur die gebruik van dualiteit tussen ykteorieë en gravitasieteorieë. Ons fokus spesifiek op vorteks oplossings wat deur magnetiese velde voortgebring word, asook tyd-afhanklike probleme in holografiese modelle. Die belangrikste resultaat is die ontdekking van 'n onverwagte effek waar sterk nie-abelse magnetiese velde 'n driehoekige vorteksrooster grondtoestand uitlok in 'n holografiese model. Die dualiteit tussen ykteorieë en gravitasie is 'n nuttige instrument wat al gebruik is om sterk-gekoppelde stelsels te bestudeer wat wissel van die kwark-gluon plasma, wat geproduseer is by deeltjieversnellers, tot gekondenseerde materie teorieë. Die belangrikste begrip is dualiteit: 'n sterk gekoppelde kwantumveldteorie kan bestudeer word deur die eienskappe van 'n spesifieke swaartekrag agtergrond, wat beskryf word deur Einstein se vergelykings, te ondersoek. Een swaartekrag agtergrond wat ons bestudeer is AdS--Schwarzschild met 'n SU(2) ykveld. Ons skakel die ykveld komponent aan wat in die veldteorie duaal is aan 'n eksterne magnetiese veld. Wanneer die magnetiese veld bo 'n spesifieke waarde val, vind ons dat die stelsel onstabiel is, wat dui op 'n supergeleidende fase oorgang. Ons vind die onstabiliteit op twee maniere. Eerstens, doen ons 'n quasinormale modus analise, waarin ons versteurings van die agtergrond bestudeer. Tweedens, herskryf ons die vergelykings in Schrödinger vorm en vind numeries dat soos die magnetiese veld sterker word, verdiep die potensiaal totdat dit diep genoeg is vir 'n gebonde toestand om te vorm. Volgende wys ons dat die gevolglike supergeleidende grondtoestand 'n rooster van driehoekige vortekse is. Dit word gedoen deur die uitvoering van 'n versteuringsuitbreiding in 'n klein parameter wat proporsioneel is tot die grootte van die kondensaat. Na die oplossing van die vergelykings tot op die derde orde, gebruik ons ​​die holografiese vertalingsvoorskrif om die totale energie van verskillende rooster oplossings te bereken en​​~die minimum energie toestand te identifiseer. Daarna wys ons dat die gevolge in 'n AdS--hard wall model ook waar is. Die AdS--hard muur model is duaal tot 'n teorie met confinement. Volgende brei ons die eenvoudige swaartekrag model uit sodat dit 'n chemiese potensiaal in sluit en dan herhaal ons die analise. Wanneer die chemiese potensiaal, magnetiese veld of albei groot is, is die stelsel in 'n supergeleidende fase. Ons bereken die fase diagram numeries. Die grondtoestand in die supergeleidende fase naby die fase-oorgangslyn vorm 'n driehoekige vorteksrooster met rooster spasiëring wat afhang van die sterkte van die magnetiese veld. Ons lewer kommentaar op die toepaslikheid van die resultate tot nie-homogene grondtoestande in holografiese supergeleiers, 'n onderwerp waarin daar onlangs baie belangstelling was. Die nuwigheid van ons resultate l\^e in beide die voorheen onbekende swartkolk oplossing en die effek van 'n groot magnetiese veld wat die vorteksrooster grondtoestand in 'n holografiese model eerder voortbring as verhinder. Ons bestudeer ook tyd-afhanklike fenomene in 'n holografiese veralgemening van die Kondo model, 'n eenvoudige gekondenseerde materie model van 'n magnetiese onreinheid wat sterk koppel aan 'n see van elektrone. Dit vereis tegnieke van numeriese relatiwiteit en laat ons toe om die reaksie van die stelsel te bepaal na 'n vinnige sprong in die koppeling. Hierdie verhandeling is gebaseer op die werk wat die skrywer tydens 'n PhD program onder die toesig van PD Dr JK Erdmenger by die Max Planck-Institut-für Physik in München, Duitsland vanaf Augustus 2011 tot Mei 2014 gedoen het. Die toespaslike publikasies is: [1] M. Ammon, J. Erdmenger, P. Kerner, and M. Strydom, “Black Hole Instability Induced by a Magnetic Field,” Phys.Lett. B706 (2011) 94–99, arXiv:1106.4551 [hep-th], [2] Y.-Y. Bu, J. Erdmenger, J. P. Shock, and M. Strydom, “Magnetic field induced lattice ground states from holography,” JHEP 1303 (2013) 165, arXiv:1210.6669 [hep-th].
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetic and gravity data"

1

Ponce, David A. Gravity and magnetic data of Fortymile Wash, Nevada Test Site, Nevada. Menlo Park, Calif: U.S. Geological Survey, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ponce, David A. Gravity, magnetic, and physical property data of the Deep Creek Range and vicinity, eastern Nevada and western Utah. [Menlo Park, CA]: U.S. Geological Survey, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geological Survey (U.S.), ed. Principal facts for gravity data collected in Wisconsin: A web site and CD-ROM for distribution of data. [Reston, Va.]: U.S. Geological Survey, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rapp, Richard H. Altimeter and gravity data analysis. [Columbus, Ohio]: Ohio State University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murthy, I. V. R. Gravity and magnetic interpretation in exploration geophysics. Bangalore: Geological Society of India, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blakely, Richard J. Potential theory in gravity and magnetic applications. Cambridge [England]: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blakely, Richard J. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fukuda, Yoichi. Precise determination of local gravity field using both the satellite altimeter data and the surface gravity data. Tokyo: Ocean Research Institute, University of Tokyo, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Theoretical physics: Gravity, magnetic fields, and wave functions. Hauppauge, N.Y., USA: Nova Science Publisher, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pardasani, R. T., and P. Pardasani. Magnetic Properties of Paramagnetic Compounds, Magnetic Susceptibility Data, Volume 2. Edited by A. Gupta. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62466-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetic and gravity data"

1

Buttkus, Burkhard. "Two-Dimensional Filters for Gravity and Magnetic Data." In Spectral Analysis and Filter Theory in Applied Geophysics, 581–607. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57016-2_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marquardt, Christian, Kathrin Schöllhammer, Georg Beyerle, Torsten Schmidt, Jens Wickert, and Christoph Reigber. "Validation and Data Quality of CHAMP Radio Occultation Data." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 384–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maus, Stefan, Kumar Hemant, Martin Rother, and Hermann Lühr. "Mapping the Lithospheric Magnetic Field from CHAMP Scalar and Vector Magnetic Data." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 269–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schreiner, Bill, Doug Hunt, Chris Rocken, and Sergey Sokolovskiy. "Radio Occultation Data Processing at the COSMIC Data Analysis and Archival Center (CDAAC)." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 536–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jakowski, Norbert, Andreas Wehrenpfennig, Stefan Heise, Christoph Reigber, and Hermann Lühr. "Status of Ionospheric Radio Occultation CHAMP Data Analysis and Validation of Higher Level Data Products." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 462–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Larsen, Georg Bergeton, Per Høeg, Jakob Grove-Rasmussen, and Martin B. Sørensen. "GPS Atmosphere and Ionosphere Methods used on Ørsted Data and Initial Application on CHAMP Data." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 485–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rother, Martin, Sungchan Choi, Hermann Lühr, and Wolfgang Mai. "CHAMP ME Data Processing and Open Issues." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 203–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oberndorfer, Helmut, and Jürgen Müller. "CHAMP Accelerometer and Star Sensor Data Combination." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 26–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whaler, Kathy A. "Crustal Magnetisation Distribution Deduced from CHAMP Data." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 281–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ao, Chi O., George A. Hajj, Thomas K. Meehan, Stephen S. Leroy, E. Robert Kursinski, Manuel Torre de la Juárez, Byron A. Iijima, and Anthony J. Mannucci. "Backpropagation Processing of GPS Radio Occultation Data." In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 415–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic and gravity data"

1

K. Fullagar, Peter, and Glenn A. Pears. "Inversion of Gravity and Magnetic Gradient Data." In 11th SAGA Biennial Technical Meeting and Exhibition. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.241.fullagar_abstract.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lei, Kaxia, J. Derek Fairhead, Tom Kerrane, and Khaldoun Al‐Bassam. "Reprocessing of Iraq magnetic and gravity data." In GEM Beijing 2011, edited by Xiong Li, Yaoguo Li, and Xiaohong Meng. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3659043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nikonova, F. I., and I. V. Ladovsky. "Interpretation of Gravity and Magnetic Data - Equivalent Solutions." In 62nd EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609-pdb.28.p176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

A. Cheznov, A., L. T. Berezhnaya, U. Telepin, and D. Fedynski. "Modern Software for Gravity and Magnetic Data Interpretation." In 3rd International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 1993. http://dx.doi.org/10.3997/2214-4609-pdb.324.836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Feng, Shengchang Chen, and Yanan Liu. "Deep learning for gravity and magnetic data interpolation." In SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, 2019. http://dx.doi.org/10.1190/segam2019-3216102.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maus, Stefan. "Scaling statistical analysis of magnetic and gravity data." In SEG Technical Program Expanded Abstracts 1996. Society of Exploration Geophysicists, 1996. http://dx.doi.org/10.1190/1.1826378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

A. Chernov, A. "Revealing Perspective Sites by Gravity and Magnetic Data." In 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201400180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meiyin, Deng, and Zhang Bin. "Fault System Interpretation Using Gravity and Magnetic Data." In 2010 International Conference on Challenges in Environmental Science and Computer Engineering. IEEE, 2010. http://dx.doi.org/10.1109/cesce.2010.173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Capriotti*, Joseph, and Yaoguo Li. "Joint equivalent source processing of gravity and gravity gradient data." In GEM 2019 Xi'an: International Workshop and Gravity, Electrical & Magnetic Methods and their Applications, Chenghu, China, 19-22 April 2015. Society of Exploration Geophysicists and Chinese Geophysical Society, 2019. http://dx.doi.org/10.1190/gem2019-082.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Capriotti, Joseph, Yaoguo Li, and Richard Krahenbuhl. "Joint inversion of gravity and gravity gradient data using a binary formulation." In International Workshop and Gravity, Electrical & Magnetic Methods and their Applications, Chenghu, China, 19-22 April 2015. Society of Exploration Geophysicists and and Chinese Geophysical Society, 2015. http://dx.doi.org/10.1190/gem2015-085.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetic and gravity data"

1

Ponce, D. A., V. E. Langenheim, and R. F. Sikora. Gravity and magnetic data of Midway Valley, southwest Nevada. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/60825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ponce, D. A., S. B. Kohrn, and S. Waddell. Gravity and magnetic data of Fortymile Wash, Nevada Test Site, Nevada. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/138727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daudier, B. S., and E. J. Schwarz. An interpretation method for gravity and magnetic data for areas peripheral to the Canadian Shield. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/120190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oliver, H. W., and R. F. Sikora. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/653997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rohr, K. M. M., C. Lowe, and P. D. Snavely. Seismic reflection, magnetics, and gravity data across the Queen Charlotte Fault and Dixon Entrance. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/184135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phelps, G. A., E. H. McKee, D. Sweetkind, and V. E. and Langenheim. Preliminary model of the pre-Tertiary basement rocks beneath Yucca Flat, Nevada Test Site, Nevada, based on analysis of gravity and magnetic data. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/774494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lyatsky, H. V., J. R. Dietrich, and D. J. Edwards. Analysis of gravity and magnetic horizontal-gradient vector data over the buried Trans-Hudson Orogen and Churchill-Superior boundary zone in southern Saskatchewan and Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keen, C. E., K. Dickie, L. T. Dafoe, T. Funck, J. K. Welford, S A Dehler, U. Gregersen, and K J DesRoches. Rifting and evolution of the Labrador-Baffin Seaway. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/321854.

Full text
Abstract:
The evolution of the 2000 km long Mesozoic rift system underlying the Labrador-Baffin Seaway is described, with emphasis on results from geophysical data sets, which provide the timing, sediment thickness, and crustal structure of the system. The data sets include seismic reflection and refraction, gravity, and magnetic data, with additional constraints provided by near-surface geology and well data. Many features that characterize rift systems globally are displayed, including: wide and narrow rift zones; magma-rich and magma-poor margin segments; exhumation of continental mantle in distal, magma-poor zones; and occurrences of thick basalts, associated with the development of seaward-dipping reflectors, and magmatic underplating. The magma-rich regions were affected by Paleogene volcanism, perhaps associated with a hotspot or plume. Plate reconstructions help elucidate the plate tectonic history and modes of rifting in the region; however, many questions remain unanswered with respect to this rift system.
APA, Harvard, Vancouver, ISO, and other styles
9

Hutchinson, D. R. Gravity data acquisition. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/290246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hayward, N., and S. Paradis. Geophysical reassessment of the role of ancient lineaments on the development of the western margin of Laurentia and its sediment-hosted Zn-Pb deposits, Yukon and Northwest Territories. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330038.

Full text
Abstract:
The role of crustal lineaments in the development of the western margin of Laurentia, Selwyn basin and associated sediment-hosted Zn-Pb deposits (clastic-dominated, Mississippi-Valley-type) in Yukon and NWT, are reassessed through a new 3-D inversion strategy applied to new compilations of gravity and magnetic data. Regionally continuous, broadly NE-trending crustal lineaments including the Liard line, Fort Norman structure, and Leith Ridge fault, were interpreted as having had long-standing influence on craton, margin, and sedimentary basin development. However, multiple tectonic overprints including terrane accretion, thrust faulting, and plutonism obscure the region's history. The Liard line, related to a transfer fault that bounds the Macdonald Platform promontory, is refined from the integration of the new geophysical models with published geological data. The geophysical models support the continuity of the Fort Norman structure below the Selwyn basin, but the presence of Leith Ridge fault is not supported in this area. The ENE-trending Mackenzie River lineament, traced from the Misty Creek Embayment to Great Bear Lake, is interpreted to mark the southern edge of a cratonic promontory. The North American craton is bounded by a NW-trending lineament interpreted as a crustal manifestation of lithospheric thinning of the Laurentian margin, as echoed by a change in the depth of the lithosphere-asthenosphere boundary. The structure is straddled by Mississippi Valley-type Zn-Pb occurrences, following their palinspastic restoration, and also defines the eastern limit of mid-Late Cretaceous granitic intrusions. Another NW-trending lineament, interpreted to be associated with a shallowing of lower crustal rocks, is coincident with clastic-dominated Zn-Pb occurrences.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography