To see the other types of publications on this topic, follow the link: Magnesium borohydride.

Journal articles on the topic 'Magnesium borohydride'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnesium borohydride.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Castilla-Martinez, Carlos A., Romain Moury, Salem Ould-Amara, and Umit B. Demirci. "Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances." Energies 14, no. 21 (October 26, 2021): 7003. http://dx.doi.org/10.3390/en14217003.

Full text
Abstract:
Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.
APA, Harvard, Vancouver, ISO, and other styles
2

Hino, Satoshi, Jon Erling Fonneløp, Marta Corno, Olena Zavorotynska, Alessandro Damin, Bo Richter, Marcello Baricco, Torben R. Jensen, Magnus H. Sørby, and Bjørn C. Hauback. "Halide Substitution in Magnesium Borohydride." Journal of Physical Chemistry C 116, no. 23 (June 2012): 12482–88. http://dx.doi.org/10.1021/jp303123q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soloveichik, Grigorii L., Matthew Andrus, and Emil B. Lobkovsky. "Magnesium Borohydride Complexed by Tetramethylethylenediamine." Inorganic Chemistry 46, no. 10 (May 2007): 3790–91. http://dx.doi.org/10.1021/ic700376n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Richter, Bo, Dorthe B. Ravnsbæk, Nikolay Tumanov, Yaroslav Filinchuk, and Torben R. Jensen. "Manganese borohydride; synthesis and characterization." Dalton Transactions 44, no. 9 (2015): 3988–96. http://dx.doi.org/10.1039/c4dt03501a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohtadi, Rana, Masaki Matsui, Timothy S. Arthur, and Son-Jong Hwang. "Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery." Angewandte Chemie International Edition 51, no. 39 (August 21, 2012): 9780–83. http://dx.doi.org/10.1002/anie.201204913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohtadi, Rana, Masaki Matsui, Timothy S. Arthur, and Son-Jong Hwang. "Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery." Angewandte Chemie 124, no. 39 (August 21, 2012): 9918–21. http://dx.doi.org/10.1002/ange.201204913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kisu, Kazuaki, Sangryun Kim, Munehiro Inukai, Hiroyuki Oguchi, Shigeyuki Takagi, and Shin-ichi Orimo. "Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor." ACS Applied Energy Materials 3, no. 4 (March 31, 2020): 3174–79. http://dx.doi.org/10.1021/acsaem.0c00113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dematteis, Erika M., and Marcello Baricco. "Hydrogen Desorption in Mg(BH4)2-Ca(BH4)2 System." Energies 12, no. 17 (August 22, 2019): 3230. http://dx.doi.org/10.3390/en12173230.

Full text
Abstract:
Magnesium borohydride, Mg(BH4)2, and calcium borohydride, Ca(BH4)2, are promising materials for hydrogen storage. Mixtures of different borohydrides have been the subject of numerous researches; however, the whole Mg(BH4)2-Ca(BH4)2 system has not been investigated yet. In this study, the phase stability and the hydrogen desorption were experimentally investigated in the Mg(BH4)2-Ca(BH4)2 system, by means of XRD, ATR-IR, and HP-DSC. Mg(BH4)2 and Ca(BH4)2 are fully immiscible in the solid state. In the mechanical mixtures, thermal decomposition occurs at slightly lower temperatures than for pure compounds. However, they originate products that cannot be identified by XRD, apart from Mg and MgH2. In fact, amorphous phases or mixtures of different poorly crystalline or nanocrystalline phases are formed, leading to a limited reversibility of the system.
APA, Harvard, Vancouver, ISO, and other styles
9

Shane, David T., Laura H. Rayhel, Zhenguo Huang, Ji-Cheng Zhao, Xia Tang, Vitalie Stavila, and Mark S. Conradi. "Comprehensive NMR Study of Magnesium Borohydride." Journal of Physical Chemistry C 115, no. 7 (January 28, 2011): 3172–77. http://dx.doi.org/10.1021/jp110762s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saldan, Ivan. "Decomposition and formation of magnesium borohydride." International Journal of Hydrogen Energy 41, no. 26 (July 2016): 11201–24. http://dx.doi.org/10.1016/j.ijhydene.2016.05.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Batha, H. D., E. D. Whitney, T. L. Heying, J. P. Faust, and S. Papetti. "Preparation of magnesium borohydride and diborane." Journal of Applied Chemistry 12, no. 11 (May 4, 2007): 478–81. http://dx.doi.org/10.1002/jctb.5010121102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Černý, Radovan, Yaroslav Filinchuk, Hans Hagemann, and Klaus Yvon. "Magnesium Borohydride: Synthesis and Crystal Structure." Angewandte Chemie 119, no. 30 (July 23, 2007): 5867–69. http://dx.doi.org/10.1002/ange.200700773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Černý, Radovan, Yaroslav Filinchuk, Hans Hagemann, and Klaus Yvon. "Magnesium Borohydride: Synthesis and Crystal Structure." Angewandte Chemie International Edition 46, no. 30 (July 23, 2007): 5765–67. http://dx.doi.org/10.1002/anie.200700773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yan, Yigang, Jakob B. Grinderslev, Mathias Jo̷rgensen, Lasse N. Skov, Jo̷rgen Skibsted, and Torben R. Jensen. "Ammine Magnesium Borohydride Nanocomposites for All-Solid-State Magnesium Batteries." ACS Applied Energy Materials 3, no. 9 (August 21, 2020): 9264–70. http://dx.doi.org/10.1021/acsaem.0c01599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tuerxun, Feilure, Yasen Abulizi, Yanna NuLi, Shuojian Su, Jun Yang, and JiuLin Wang. "High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries." Journal of Power Sources 276 (February 2015): 255–61. http://dx.doi.org/10.1016/j.jpowsour.2014.11.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dimitrievska, Mirjana, Marina Chong, Mark E. Bowden, Hui Wu, Wei Zhou, Iffat Nayyar, Bojana Ginovska, et al. "Structural and reorientational dynamics of tetrahydroborate (BH4−) and tetrahydrofuran (THF) in a Mg(BH4)2·3THF adduct: neutron-scattering characterization." Physical Chemistry Chemical Physics 22, no. 1 (2020): 368–78. http://dx.doi.org/10.1039/c9cp03311d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wegner, W., T. Jaroń, M. A. Dobrowolski, Ł. Dobrzycki, M. K. Cyrański, and W. Grochala. "Organic derivatives of Mg(BH4)2as precursors towards MgB2and novel inorganic mixed-cation borohydrides." Dalton Transactions 45, no. 36 (2016): 14370–77. http://dx.doi.org/10.1039/c6dt02239a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matsunaga, T., F. Buchter, K. Miwa, S. Towata, S. Orimo, and A. Züttel. "Magnesium borohydride: A new hydrogen storage material." Renewable Energy 33, no. 2 (February 2008): 193–96. http://dx.doi.org/10.1016/j.renene.2007.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Paduani, C. "A study of the effect of the addition of nanostructured carbonaceous catalysts in the dehydrogenation mechanism of magnesium borohydride." Journal of Materials Chemistry A 3, no. 2 (2015): 819–24. http://dx.doi.org/10.1039/c4ta05825a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Samuel, Devon, Carl Steinhauser, Jeffrey G. Smith, Aaron Kaufman, Maxwell D. Radin, Junichi Naruse, Hidehiko Hiramatsu, and Donald J. Siegel. "Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride." ACS Applied Materials & Interfaces 9, no. 50 (December 5, 2017): 43755–66. http://dx.doi.org/10.1021/acsami.7b15547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Al–Kukhun, Ahmad, Hyun Tae Hwang, and Arvind Varma. "NbF5 additive improves hydrogen release from magnesium borohydride." International Journal of Hydrogen Energy 37, no. 23 (December 2012): 17671–77. http://dx.doi.org/10.1016/j.ijhydene.2012.09.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lobkovskii, �. B., L. V. Titov, M. D. Levicheva, and A. N. Chekhlov. "Crystal and molecular structure of magnesium borohydride diglymate." Journal of Structural Chemistry 31, no. 3 (1990): 506–8. http://dx.doi.org/10.1007/bf00743602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Her, Jae-Hyuk, Peter W. Stephens, Yan Gao, Grigorii L. Soloveichik, Job Rijssenbeek, Matthew Andrus, and Ji-Cheng Zhao. "Structure of unsolvated magnesium borohydride Mg(BH4)2." Acta Crystallographica Section B Structural Science 63, no. 4 (July 17, 2007): 561–68. http://dx.doi.org/10.1107/s0108768107022665.

Full text
Abstract:
We have determined the structures of two phases of unsolvated Mg(BH4)2, a material of interest for hydrogen storage. One or both phases can be obtained depending on the synthesis conditions. The first, a hexagonal phase with space group P61, is stable below 453 K. Upon heating above that temperature it transforms to an orthorhombic phase, with space group Fddd, stable to 613 K at which point it decomposes with hydrogen release. Both phases consist of complex networks of corner-sharing tetrahedra consisting of a central Mg atom and four BH4 units. The high-temperature orthorhombic phase has a strong antisite disorder in the a lattice direction, which can be understood on the basis of atomic structure.
APA, Harvard, Vancouver, ISO, and other styles
24

Newhouse, Rebecca J., Vitalie Stavila, Son-Jong Hwang, Leonard E. Klebanoff, and Jin Z. Zhang. "Reversibility and Improved Hydrogen Release of Magnesium Borohydride." Journal of Physical Chemistry C 114, no. 11 (February 25, 2010): 5224–32. http://dx.doi.org/10.1021/jp9116744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zavorotynska, Olena, Stefano Deledda, Guanqiao Li, Motoaki Matsuo, Shin-ichi Orimo, and Bjørn C. Hauback. "Isotopic Exchange in Porous and Dense Magnesium Borohydride." Angewandte Chemie 127, no. 36 (July 15, 2015): 10738–41. http://dx.doi.org/10.1002/ange.201502699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zavorotynska, Olena, Stefano Deledda, Guanqiao Li, Motoaki Matsuo, Shin-ichi Orimo, and Bjørn C. Hauback. "Isotopic Exchange in Porous and Dense Magnesium Borohydride." Angewandte Chemie International Edition 54, no. 36 (July 15, 2015): 10592–95. http://dx.doi.org/10.1002/anie.201502699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zavorotynska, O., I. Saldan, S. Hino, T. D. Humphries, S. Deledda, and B. C. Hauback. "Hydrogen cycling in γ-Mg(BH4)2 with cobalt-based additives." Journal of Materials Chemistry A 3, no. 12 (2015): 6592–602. http://dx.doi.org/10.1039/c5ta00511f.

Full text
Abstract:
Hydrogen desorption and absorption properties of magnesium borohydride (Mg(BH4)2) were studied for three cycles. Effect of cobalt additives and their local structure upon cycling were investigated in detail.
APA, Harvard, Vancouver, ISO, and other styles
28

Xu, Huimin, Zhonghua Zhang, Jiajia Li, Lixin Qiao, Chenglong Lu, Kun Tang, Shanmu Dong, et al. "Multifunctional Additives Improve the Electrolyte Properties of Magnesium Borohydride Toward Magnesium–Sulfur Batteries." ACS Applied Materials & Interfaces 10, no. 28 (June 27, 2018): 23757–65. http://dx.doi.org/10.1021/acsami.8b04674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mohtadi, Rana, Masaki Matsui, Timothy S. Arthur, and Son-Jong Hwang. "Titelbild: Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery (Angew. Chem. 39/2012)." Angewandte Chemie 124, no. 39 (September 11, 2012): 9839. http://dx.doi.org/10.1002/ange.201206771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zyubin, A. S., T. S. Zyubina, O. V. Kravchenko, M. V. Solov’ev, M. V. Tsvetkov, A. A. Zaitsev, and Yu A. Dobrovol’skii. "Dihydrogen Elimination from Hydrated Magnesium Borohydride: Quantum-Chemical Modeling." Russian Journal of Inorganic Chemistry 63, no. 2 (February 2018): 201–12. http://dx.doi.org/10.1134/s0036023618020237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Juner, Yong Shen Chua, Hui Wu, Zhitao Xiong, Teng He, Wei Zhou, Xiaohua Ju, Minghui Yang, Guotao Wu, and Ping Chen. "Synthesis, structures and dehydrogenation of magnesium borohydride–ethylenediamine composites." International Journal of Hydrogen Energy 40, no. 1 (January 2015): 412–19. http://dx.doi.org/10.1016/j.ijhydene.2014.11.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yang, Yanjing, Yongfeng Liu, You Li, Xin Zhang, Mingxia Gao, and Hongge Pan. "Towards the endothermic dehydrogenation of nanoconfined magnesium borohydride ammoniate." Journal of Materials Chemistry A 3, no. 20 (2015): 11057–65. http://dx.doi.org/10.1039/c5ta00697j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Meichun, Liuzhang Ouyang, Meiqin Zeng, Jiangwen Liu, Chenghong Peng, Huaiyu Shao, and Min Zhu. "Magnesium borohydride hydrolysis with kinetics controlled by ammoniate formation." International Journal of Hydrogen Energy 44, no. 14 (March 2019): 7392–401. http://dx.doi.org/10.1016/j.ijhydene.2019.01.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vasilenko, Vladislav, Clemens K. Blasius, Hubert Wadepohl, and Lutz H. Gade. "Borohydride intermediates pave the way for magnesium-catalysed enantioselective ketone reduction." Chemical Communications 56, no. 8 (2020): 1203–6. http://dx.doi.org/10.1039/c9cc09111d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Le, Thi Thu, Claudio Pistidda, Julián Puszkiel, Chiara Milanese, Sebastiano Garroni, Thomas Emmler, Giovanni Capurso, Gökhan Gizer, Thomas Klassen, and Martin Dornheim. "Efficient Synthesis of Alkali Borohydrides from Mechanochemical Reduction of Borates Using Magnesium–Aluminum-Based Waste." Metals 9, no. 10 (September 29, 2019): 1061. http://dx.doi.org/10.3390/met9101061.

Full text
Abstract:
Lithium borohydride (LiBH4) and sodium borohydride (NaBH4) were synthesized via mechanical milling of LiBO2, and NaBO2 with Mg–Al-based waste under controlled gaseous atmosphere conditions. Following this approach, the results herein presented indicate that LiBH4 and NaBH4 can be formed with a high conversion yield starting from the anhydrous borates under 70 bar H2. Interestingly, NaBH4 can also be obtained with a high conversion yield by milling NaBO2·4H2O and Mg–Al-based waste under an argon atmosphere. Under optimized molar ratios of the starting materials and milling parameters, NaBH4 and LiBH4 were obtained with conversion ratios higher than 99.5%. Based on the collected experimental results, the influence of the milling energy and the correlation with the final yields were also discussed.
APA, Harvard, Vancouver, ISO, and other styles
36

Bateni, Ali, Stephan Scherpe, Selcuk Acar, and Mehmet Somer. "Novel Approach for Synthesis of Magnesium Borohydride, Mg(BH4)2." Energy Procedia 29 (2012): 26–33. http://dx.doi.org/10.1016/j.egypro.2012.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kumar, Sanjay, Anamika Singh, K. Nakajima, Ankur Jain, H. Miyaoka, T. Ichikawa, G. K. Dey, and Y. Kojima. "Improved hydrogen release from magnesium borohydride by ZrCl 4 additive." International Journal of Hydrogen Energy 42, no. 35 (August 2017): 22342–47. http://dx.doi.org/10.1016/j.ijhydene.2016.12.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kayacan, İlknur, Özkan Murat Doğan, and Bekir Zühtü Uysal. "Effect of magnesium on sodium borohydride synthesis from anhydrous borax." International Journal of Hydrogen Energy 36, no. 13 (July 2011): 7410–15. http://dx.doi.org/10.1016/j.ijhydene.2011.03.142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kristensen, Lasse G., Mads B. Amdisen, Mie Andersen, and Torben R. Jensen. "Synthesis, Structure and Mg2+ Ionic Conductivity of Isopropylamine Magnesium Borohydride." Inorganics 11, no. 1 (December 30, 2022): 17. http://dx.doi.org/10.3390/inorganics11010017.

Full text
Abstract:
The discovery of new inorganic magnesium electrolytes may act as a foundation for the rational design of novel types of solid-state batteries. Here we investigated a new type of organic-inorganic metal hydride, isopropylamine magnesium borohydride, Mg(BH4)2∙(CH3)2CHNH2, with hydrophobic domains in the solid state, which appear to promote fast Mg2+ ionic conductivity. A new synthetic strategy was designed by combination of solvent-based methods and mechanochemistry. The orthorhombic structure of Mg(BH4)2∙(CH3)2CHNH2 was solved ab initio by the Rietveld refinement of synchrotron X-ray powder diffraction data and density functional theory (DFT) structural optimization in space group I212121 (unit cell, a = 9.8019(1) Å, b = 12.1799(2) Å and c = 17.3386(2) Å). The DFT calculations reveal that the three-dimensional structure may be stabilized by weak dispersive interactions between apolar moieties and that these may be disordered. Nanoparticles and heat treatment (at T > 56 °C) produce a highly conductive composite, σ(Mg2+) = 2.86 × 10−7, and 2.85 × 10−5 S cm−1 at −10 and 40 °C, respectively, with a low activation energy, Ea = 0.65 eV. Nanoparticles stabilize the partially eutectic molten state and prevent recrystallization even at low temperatures and provide a high mechanical stability of the composite.
APA, Harvard, Vancouver, ISO, and other styles
40

Chong, Marina, Abhi Karkamkar, Tom Autrey, Shin-ichi Orimo, Satish Jalisatgi, and Craig M. Jensen. "Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions." Chem. Commun. 47, no. 4 (2011): 1330–32. http://dx.doi.org/10.1039/c0cc03461d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huang, Miaojun, Hao Zhong, Liuzhang Ouyang, Chenghong Peng, Xiaoke Zhu, Weiheng Zhu, Fang Fang, and Min Zhu. "Efficient regeneration of sodium borohydride via ball milling dihydrate sodium metaborate with magnesium and magnesium silicide." Journal of Alloys and Compounds 729 (December 2017): 1079–85. http://dx.doi.org/10.1016/j.jallcom.2017.09.262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Severa, Godwin, Ewa Rönnebro, and Craig M. Jensen. "Direct hydrogenation of magnesium boride to magnesium borohydride: demonstration of >11 weight percent reversible hydrogenstorage." Chem. Commun. 46, no. 3 (2010): 421–23. http://dx.doi.org/10.1039/b921205a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mohtadi, Rana, Masaki Matsui, Timothy S. Arthur, and Son-Jong Hwang. "Cover Picture: Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery (Angew. Chem. Int. Ed. 39/2012)." Angewandte Chemie International Edition 51, no. 39 (September 11, 2012): 9701. http://dx.doi.org/10.1002/anie.201206771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Palisoc, Shirley, Daryl Joe Santos, and Michelle Natividad. "Borohydride-based electrolyte system for Magnesium-Persulfate (Mg||MgS2O8) rechargeable battery." Ain Shams Engineering Journal 12, no. 3 (September 2021): 3021–30. http://dx.doi.org/10.1016/j.asej.2020.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zyubin, A. S., T. S. Zyubina, O. V. Kravchenko, M. V. Solov’ev, V. P. Vasiliev, A. A. Zaitsev, A. V. Shikhovtsev, and Yu A. Dobrovol’sky. "Quantum-Chemical Simulation of Molecular Hydrogen Abstraction from Magnesium Borohydride Triammoniate." Russian Journal of Inorganic Chemistry 67, no. 10 (September 27, 2022): 1591–605. http://dx.doi.org/10.1134/s0036023622100576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ruslan, Nuraini, Muhammad Syarifuddin Yahya, Md Nurul Islam Siddique, Ashish Prabhakar Yengantiwar, Mohammad Ismail, Md Rabiul Awal, Mohd Zaki Mohd Yusoff, Muhammad Firdaus Asyraf Abdul Halim Yap, and Nurul Shafikah Mustafa. "Review on Magnesium Hydride and Sodium Borohydride Hydrolysis for Hydrogen Production." Crystals 12, no. 10 (September 28, 2022): 1376. http://dx.doi.org/10.3390/cryst12101376.

Full text
Abstract:
Metal hydrides such as MgH2 and NaBH4 are among the materials for with the highest potential solid-state hydrogen storage. However, unlike gas and liquid storage, a dehydrogenation process has to be done prior to hydrogen utilization. In this context, the hydrolysis method is one of the possible methods to extract or generate hydrogen from the materials. However, problems like the MgH2 passivation layer, high cost and sluggish self-hydrolysis of NaBH4 are the known limiting factors for this process, but they can be overcome with the help of catalysts. In this works, selected studies have been reviewed on the performance of catalysts like chloride, oxide, fluoride, platinum, ruthenium, cobalt and nickel-based on the MgH2 and NaBH4 system. These studies show a significant enhancement in the amount of hydrogen released as compared to the hydrolysis of the pure MgH2 and NaBH4. Therefore, the addition of catalysts is proven as one of the options in improving hydrogen generation via the hydrolysis of MgH2 and NaBH4.
APA, Harvard, Vancouver, ISO, and other styles
47

Lv, Yujie, and Ying Wu. "Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review)." Progress in Natural Science: Materials International 31, no. 6 (December 2021): 809–20. http://dx.doi.org/10.1016/j.pnsc.2021.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sikora, W., R. Caputo, A. Tekin, A. Kuna, and A. Kupczak. "Symmetry relations and phase stability of magnesium borohydride Mg(BH4)2." Acta Crystallographica Section A Foundations of Crystallography 67, a1 (August 22, 2011): C333—C334. http://dx.doi.org/10.1107/s0108767311091628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Z. G., H. Wang, J. W. Liu, and M. Zhu. "Thermal decomposition behaviors of magnesium borohydride doped with metal fluoride additives." Thermochimica Acta 560 (May 2013): 82–88. http://dx.doi.org/10.1016/j.tca.2013.02.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fan, Jing, Defang Duan, Xilian Jin, Kuo Bao, Bingbing Liu, and Tian Cui. "Structure determination of ultra dense magnesium borohydride: A first-principles study." Journal of Chemical Physics 138, no. 21 (June 7, 2013): 214503. http://dx.doi.org/10.1063/1.4807851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography