Academic literature on the topic 'Magmatisme d’arc'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magmatisme d’arc.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magmatisme d’arc"

1

Hildebrand, Robert S., and Joseph B. Whalen. "Arc and Slab-Failure Magmatism in Cordilleran Batholiths II – The Cretaceous Peninsular Ranges Batholith of Southern and Baja California." Geoscience Canada 41, no. 4 (December 3, 2014): 399. http://dx.doi.org/10.12789/geocanj.2014.41.059.

Full text
Abstract:
Ever since the late 1960s when Warren Hamilton proposed that the great Cordilleran batholiths of the western Americas are the roots of volcanic arcs like the Andes and were generated by longstanding eastward subduction, most geologists have followed suit, despite the evergrowing recognition that many Cordilleran batholiths are complex, composite bodies that developed with intervals of intense shortening and exhumation between and during periods of magmatism. The Peninsular Ranges batholith of Southern and Baja California provides a superb place to unravel the complexities because there is a lot of data and because it is longitudinally composed of two parts: an older western portion of weakly to moderately deformed, low-grade volcanic and epizonal plutonic rocks ranging in age from ~128–100 Ma; and a more easterly sector of deformed amphibolite grade rocks cut by compositionally zoned, mesozonal plutonic complexes of the La Posta suite, emplaced from 99–86 Ma. While plutons of the La Posta suite are generally considered to be the product of continued eastward subduction, they are enigmatic, because they and their wall rocks were rapidly exhumed from as deep as 23 km and eroded during, and just after, their emplacement, unlike plutons in magmatic arcs, which are generally emplaced in zones of subsidence. Here we resolve the enigma with a model where westward-dipping subduction led to arc magmatism of the western sector, the Santiago Peak–Alisitos composite arc, during the period ~128–100 Ma. Arc magmatism shut down when the arc collided with a west-facing Early Cretaceous passive margin at about 100 Ma. During the collision the buoyancy contrast between the continental crust of the eastern block and its attached oceanic lithosphere led to failure of the subducting slab. The break-off allowed subjacent asthenosphere to upwell, adiabatically melt, and rise into the upper plate to create the large zoned tonalite–granodiorite–granite complexes of the La Posta suite. While compositionally similar to arc plutons in many respects, the examples from the Southern California and Baja segments of the batholith have geochemistry that indicates they were derived from partial melting of asthenosphere at deeper levels in the mantle than typical arc magmas, and within the garnet stability field. This is consistent with asthenosphere upwelling through the torn lower-plate slab. We identify kindred rocks with similar geological relations in other Cordilleran batholiths of the Americas, such as the Sierra Nevada, which lead us to suggest that slab failure magmatism is common, both spatially and temporally.SOMMAIREDepuis la fin des années 1960, Warren Hamilton a proposé que les grands batholites de la Cordillère de l'ouest des Amériques sont les racines d’arcs volcaniques andéens issus de la subduction vers l'est de longue durée, et depuis la plupart des géologues ont emboîté le pas, bien qu’un nombre croissant d’indications montrent que de nombreux batholites de la Cordillère sont des entités composites complexes qui se sont développés lors d’intervalles intenses de contraction et d’exhumation, durant et entre les périodes de magmatisme. Le batholite Peninsular Ranges du Sud de la Californie et de Baja California est un excellent endroit permettant de démêler les choses parce qu'il y a beaucoup de données et parce qu'il est composé longitudinalement de deux parties: une partie occidentale plus ancienne, faiblement à modérément déformée, de roches volcaniques de faible métamorphisme et de roches plutoniques épizonales âgées d’environ 128 Ma à 100 Ma; et, d’un segment plus à l'est de roches amphiboliques déformées recoupées par des roches de composition zonée des complexes mésozonaux plutoniques de la suite de la Posta, mises en place entre 99 Ma et 86 Ma. Bien que les plutons de la suite La Posta sont généralement considérés comme le produit d’une subduction soutenue vers l’est, ils posent problème, parce qu'avec leurs roches encaissantes, ils ont été rapidement exhumés de profondeurs aussi grandes que 23 km, et érodées durant et juste après leur mise en place, contrairement aux plutons des arcs magmatiques, qui sont généralement mis en place dans les zones de subsidence. Dans le présent article, nous proposons une solution à ce problème, avec un modèle de subduction vers l'ouest qui conduit à un magmatisme d'arc du secteur ouest, l'arc composite de Santiago Peak-Alisitos, durant la période d’environ 128 Ma à 100 Ma. Le magmatisme d’arc s’est arrêté lorsque l'arc est entré en collision avec une marge passive à pendage ouest du début du Crétacé, il y a environ 100 Ma. Lors de la collision, le contraste de flottabilité entre la croûte continentale du bloc de est et la lithosphère océanique qui y est rattachée a conduit à l'avortement de la plaque plongeante. La cassure a entrainé la remontée de l’asthénosphère sous-jacente, sa fusion adiabatique, et sa remontée dans la plaque supérieure pour former les grands complexes zonés de tonalite-granodiorite-granite de La Posta. Bien que de composition similaire aux plutons d'arc à bien des égards, les exemples des segments de batholites de Californie du Sud et de Baja ont une géochimie qui indique qu'ils proviennent de la fusion partielle de l’asthénosphère à des niveaux plus profonds dans le manteau que les magmas d'arc typiques, à l’intérieur du domaine de stabilité du grenat. Ce qui correspond à une remontée d’asthénosphère à travers une dalle de plaque inférieure cassée. Nous connaissons des roches semblables avec les relations géologiques similaires dans d'autres batholites de la Cordillère des Amériques, tel celles de la Sierra Nevada, ce qui nous amène à penser que le magmatisme de cassure de plaque est commun, tant spatialement et temporellement.
APA, Harvard, Vancouver, ISO, and other styles
2

Schoonmaker, Adam, William S. F. Kidd, Stephen E. DeLong, and John F. Bender. "Lawrence Head Volcanics and Dunnage Mélange, Newfoundland Appalachians: Origin by Ordovician Ridge Subduction or in Back-Arc Rift?" Geoscience Canada 41, no. 4 (December 3, 2014): 523. http://dx.doi.org/10.12789/geocanj.2014.41.053.

Full text
Abstract:
This paper reviews the geological setting and reports new geochemical trace element data from the Ordovician Lawrence Head Volcanics (LHV) and the underlying gabbro sills in the Exploits Group. In combination with existing published analyses and ages of these rocks, the volcanic rocks and sills are indistinguishable in composition and age, and the data are consistent with the hypothesis that they represent the same (mostly E-MORB composition) magmatic event in the early–mid Darriwilian (~465 ± 2 Ma). The LHV and their enclosing strata show regional evidence for: 1) upward decline of volume and grain size of arc-derived volcaniclastic materials over the uppermost interval of turbidite sedimentary strata below the LHV; 2) change to shallow marine conditions locally by the end of the LHV event, followed immediately by significant subsidence, and 3) no evidence of coarse-grained clastic input, nor of normal faulting, during or immediately after LHV magmatism. Ridge–trench interaction (ridge subduction) at a subduction system is consistent with all of these features and spatial distribution of related elements, but a rift (back-arc) origin over a subduction zone can only accommodate the compositions, and is inconsistent with the geological evidence. The Dunnage Mélange (DM) has been interpreted either as olistostromal in a developing back-arc rift basin, or as a subduction accretionary prism. Peraluminous intrusions in the mélange (Coaker Porphyry ― CP) are more readily explained by ridge subduction, and a previously reported zircon age (469 ± 4 Ma) is consistent with the age of the LHV and gabbro sills, also interpreted as products of ridge subduction. Localization of the CP in the eastern area of DM, and of most of the large LHV-derived volcanic blocks in the western DM, suggests a slightly younger age, and perhaps a different mechanism, for the origin of the western DM.SOMMAIRECet article passe en revue le contexte géologique et présente de nouvelles données géochimiques d’éléments traces des roches volcaniques ordoviciennes de Lawrence Head (LHV) et des filons-couches de gabbro sous-jacents du Groupe Exploits. Considérant la combinaison des données d’analyse publiées et des datations de ces roches, les roches volcaniques et les filons-couches sont indiscernables tant en composition qu’en âge, et les données sont compatibles avec l’hypothèse selon laquelle ils représentent le même événement magmatique (principalement E-MORB) du Darriwilien précoce à moyen (~465 ± 2 Ma). Les LHV ainsi que les strates de l’encaissant renferment des indices régionaux qui montrent : 1) que le volume et la granulométrie des matériaux volcanoclastiques d’arc diminuent vers le haut dans l’intervalle supérieur des strates de turbidites sédimentaires sous les LHV; 2) que le changement vers des milieux marins peu profonds localement vers la fin de l’événement des LHV a été suivi immédiatement par une subsidence importante, et 3) qu’il n’existe pas d’indices d’apports clastiques à gros grains, non plus que de formation de failles normales, durant ou immédiatement après le magmatisme des LHV. L’interaction crête-fosse (subduction de la crête) au lieu d’un système de subduction concorde avec toutes ces caractéristiques et la répartition spatiale des éléments reliés, alors qu’une origine de crête (arrière-arc) au-dessus d’une zone de subduction ne peut expliquer que les compositions et qu’elle est incompatible avec l’évidence géologique. Le Dunnage Mélange (DM) a été interprété soit comme un olistostome dans un bassin d’arrière-arc en développement, ou comme un prisme d’accrétion de subduction. Les intrusions hyperalumineuses dans le mélange (Porphyre Coaker — CP), s’explique plus facilement par une subduction de crête, et un âge de datation sur zircon de (469 ± 4 Ma) correspond à l’âge des LHV et des filons-couche de gabbro, aussi interprétés comme produits d’une subduction de crête. La localisation du CP dans la portion orientale du DM, et de la majeure partie des grands blocs volcaniques dérivés des LHV de la portion ouest du DM, suggère un âge légèrement plus jeune, et peut-être un mécanisme différent, pour l’origine de la portion ouest du DM.
APA, Harvard, Vancouver, ISO, and other styles
3

McLelland, James M., Bruce W. Selleck, and Marion E. Bickford. "Tectonic Evolution of the Adirondack Mountains and Grenville Orogen Inliers within the USA." Geoscience Canada 40, no. 4 (December 20, 2013): 318. http://dx.doi.org/10.12789/geocanj.2013.40.022.

Full text
Abstract:
Recent investigations in geochronology and tectonics provide important new insights into the evolution of the Grenville Orogen in North America. Here, we summarize results of this research in the USA and focus upon ca. 1.4–0.98 Ga occurrences extending from the Adirondack Mountains to the southern Appalachians and Texas. Recent geochronology (mainly by U/Pb SHRIMP) establishes that these widely separated regions experienced similar tectonomagmatic events, i.e., the Elzevirian (ca. 1.25–1.22 Ga), Shawinigan (ca. 1.2–1.14 Ga), and Grenvillian (ca. 1.09–0.98 Ga) orogenies and associated plate interactions. Notwithstanding these commonalities, Nd model ages and Pb isotopic mapping has revealed important differences that are best explained by the existence of contrasting compositions of deep crustal reservoirs beneath the Adirondacks and the southern Appalachians. The isotopic compositions for the Adirondacks lie on the same Pb–Pb array as those for the Grenville Province, the Granite-Rhyolite Province and the Grenvillian inliers of Texas suggesting that they all developed on Laurentian crust. On the other hand, data from the southern Appalachians are similar to those of the Sunsas Terrane in Brazil and suggest that Amazonian crust with these Pb–Pb characteristics was thrust onto eastern Laurentia during its Grenvillian collision with Amazonia and subsequently transferred to the latter during the late Neoproterozoic breakup of the supercontinent, Rodinia, and the formation of the Iapetus Ocean. The ca. 1.3–1.0 Ga Grenville Orogen is also exposed in the Llano Uplift of Texas and in small inliers in west Texas and northeast Mexico. The Llano Uplift contains evidence for a major collision with a southern continent at ca. 1.15–1.12 Ga (Kalahari Craton?), magmatic arcs, and back-arc and foreland basins, all of which are reviewed. The Grenvillian Orogeny is considered to be the culminating tectonic event that terminated approximately 500 m.y. of continental margin growth along southeastern Laurentia by accretion, continental margin arc magmatism, and metamorphism. Accordingly, we briefly review the tectonic and magmatic histories of these Paleoproterozoic and Mesoproterozoic pre-Grenvillian orogens, i.e., Penokean, Yavapai, and Mazatzal as well as the Granite-Rhyolite Province and discuss their ~5000 km transcontinental span.SOMMAIREDes recherches récentes en géochronologie et en tectonique révèlent d’importants faits nouveaux sur l’évolution de l’orogénie de Grenville en Amérique du Nord. Nous présentons ici un sommaire des résultats de cet effort de recherche aux USA en mettant l’accent sur les indices datés entre env. 1,4 et 0,98 Ga, à partir des monts Adirondack jusqu’au sud des Appalaches et au Texas. Des données géochronologiques récentes (par microsonde SHRIMP principalement) indiquent que les roches de ces régions très éloignées les unes des autres ont subies l’effet d’épisodes tectonomagmatiques similaires, par exemple, aux orogenèses de l’Elzévirien (env. 1.25–1.22 Ga), de Shawinigan (env. 1.2–1.14 Ga), et du Grenvillien (env. 1.09–0.98 Ga), ainsi que des interactions des plaques associées. Malgré ces points communs, la chronologie Nd et la cartographie isotopique Pb a révélé des différences importantes qui s’expliquent plus aisément par des compositions contrastées des réservoirs profonds de croûte sous les Adirondacks et le sud des Appalaches. Les compositions isotopiques des Adirondacks sont de la même gamme Pb-Pb que ceux de la Province de Grenville, de la Province Granite-rhyolite et des boutonnières grenvilliennes du Texas, suggérant qu'ils se sont tous développées sur la croûte des Laurentides. Par ailleurs, les données des Appalaches du sud sont semblables à celles du terrane de Sunsas au Brésil, ce qui incite à penser que la croûte amazonienne, avec de telles caractéristiques Pb-Pb, a été poussée sur la portion est de Laurentia lors de sa collision grenvillienne avec l’Amazonie puis laissée à cette dernière au cours de la rupture du supercontinent Rodinia vers la fin du Néoprotérozoïque, avec la formation de l'océan Iapetus. L’orogène de Grenville (1,3 à 1,0 Ga env.) est également exposé dans le soulèvement de Llano au Texas et dans de petites boutonnières dans l'ouest du Texas et le nord du Mexique. Le soulèvement de Llano montre des indices d'une collision majeure avec un continent au sud, entre env. 1,15 et 1,12 Ga (craton de Kalahari?), des zones d’arcs magmatiques, d'arrière-arc et de bassin d'avant-pays, chacun étant présenté ci-dessous. L'orogenèse de Grenville est considéré comme l'événement tectonique culminant qui marqué la fin d’une période d’environ 500 ma d’accroissement de la marge continentale le long de la bordure sud-est de la Laurentie, par accrétion, magmatisme d’arc de marge continentale, et métamorphisme. C’est pourquoi, nous passons brièvement en revue l'histoire tectonique et magmatique de ces orogènes pré-grenvilliennes paléoprotérozoïques et mésoprotérozoïques, pénokéenne, de Yavapai, et de Mazatzal ainsi que la Province de Granite-rhyolite, et discutons de son étendue sur env. 5 000 km.
APA, Harvard, Vancouver, ISO, and other styles
4

Hildebrand, Robert S., and Joseph B. Whalen. "Arc and Slab-Failure Magmatism in Cordilleran Batholiths I – The Cretaceous Coastal Batholith of Peru and its Role in South American Orogenesis and Hemispheric Subduction Flip." Geoscience Canada 41, no. 3 (August 29, 2014): 255. http://dx.doi.org/10.12789/geocanj.2014.41.047.

Full text
Abstract:
We examined the temporal and spatial relations of rock units within the Western Cordillera of Peru where two Cretaceous basins, the Huarmey-Cañete and the West Peruvian Trough, were considered by previous workers to represent western and eastern parts respectively of the same marginal basin. The Huarmey-Cañete Trough, which sits on Mesoproterozoic basement of the Arequipa block, was filled with up to 9 km of Tithonian to Albian tholeiitic–calc-alkaline volcanic and volcaniclastic rocks. It shoaled to subaerial eastward. At 105–101 Ma the rocks were tightly folded and intruded during and just after the deformation by a suite of 103 ± 2 Ma mafic intrusions, and later in the interval 94–82 Ma by probable subduction-related plutons of the Coastal batholith. The West Peruvian Trough, which sits on Paleozoic metamorphic basement, comprised a west-facing siliciclastic-carbonate platform and adjacent basin filled with up to 5 km of sandstone, shale, marl and thinly bedded limestone deposited continuously throughout the Cretaceous. Rocks of the West Peruvian Trough were detached from their basement, folded and thrust eastward during the Late Cretaceous–Early Tertiary. Because the facies and facing directions of the two basins are incompatible, and their development and subjacent basements also distinct, the two basins could not have developed adjacent to one another. Based on thickness, composition and magmatic style, we interpret the magmatism of the Huarmey-Cañete Trough to represent a magmatic arc that shut down at about 105 Ma when the arc collided with an unknown terrane. We relate subsequent magmatism of the early 103 ± 2 Ma syntectonic mafic intrusions and dyke swarms to slab failure. The Huarmey-Cañete-Coastal batholithic block and its Mesoproterozoic basement remained offshore until 77 ± 5 Ma when it collided with, and was emplaced upon, the partially subducted western margin of South America to form the east-vergent Marañon fold–thrust belt. A major pulse of 73–62 Ma plutonism and dyke emplacement followed terminal collision and is interpreted to have been related to slab failure of the west-dipping South American lithosphere. Magmatism, 53 Ma and younger, followed terminal collision and was generated by eastward subduction of Pacific oceanic lithosphere beneath South America. Similar spatial and temporal relations exist over the length of both Americas and represent the terminal collision of an arc-bearing ribbon continent with the Americas during the Late Cretaceous–Early Tertiary Laramide event. It thus separated long-standing westward subduction from the younger period of eastward subduction characteristic of today. We speculate that the Cordilleran Ribbon Continent formed during the Mesozoic over a major zone of downwelling between Tuzo and Jason along the boundary of Panthalassic and Pacific oceanic plates.SOMMAIRENous avons étudié les relations spatiales et temporales des unités de roches dans la portion ouest de la Cordillère du Pérou, où deux bassins crétacés, la fosse d’accumulation de Huarmey-Cañete et la fosse d’accumulation péruvienne de l’ouest, ont été perçues par des auteurs précédents comme les portions ouest et est d’un même bassin de marge. La fosse de Huarmey-Cañete, qui repose sur le socle mésoprotérozoïque du bloc d’Arequipa, a été comblée par des couches de roches volcaniques tholéitiques – calco-alcalines de l’Albien au Thithonien atteignant 9 km d’épaisseur. Vers l’est, l’ensemble a fini par former des hauts fonds. Vers 105 à 101 Ma, les roches ont été plissées fortement puis recoupées par une suite d’intrusions vers 103 ± 2 Ma, durant et juste après la déformation, et plus tard dans l’intervalle 94 – 82 Ma, probablement par des plutons de subduction du batholite côtier. Quant à la fosse d’accumulation péruvienne de l’ouest, elle repose sur un socle métamorphique paléozoïque, et elle est constituée d’une plateforme silicoclastique – carbonate à pente ouest et d’un bassin contigu comblé par des grès, des schistes, des marnes et des calcaires finement laminés atteignant 5 km d’épaisseur et qui se sont déposés en continu durant tout le Crétacé. Les roches de la fosse d’accumulation péruvienne de l’ouest ont été décollées de leur socle, plissées et charriées vers l’est durant la fin du Crétacé et le début du Tertiaire. Parce que les facies et les profondeurs de sédimentation de ces deux fosses d’accumulation dont incompatibles, et que leur développement et leur socle sont différents, ces deux fosses ne peuvent pas s’être développées côte à côte. À cause de l’épaisseur accumulée, de sa composition et du style de son magmatisme, nous pensons que la fosse d’accumulation de Huarmey-Cañete représente un arc magmatique qui s’est éteinte vers 105 Ma, lorsque l’arc est entré en collision avec un terrane inconnu. Nous pensons que le magmatisme subséquent aux premières intrusions mafiques syntectoniques et aux réseaux de dykes de 103 ± 2 Ma sont à mettre au compte d’une rupture de plaque. Le bloc Huarmey-Cañete-batholitique côtier et son socle mésoprotérozoïque sont demeurés au large jusqu’à 77 ± 5 Ma, moment où il est entré en collision et a été poussé par-dessus la marge ouest sud-américaine partiellement subduite, pour ainsi former la zone de chevauchement de vergence est de Marañon. Nous croyons que la séquence majeure de plutonisme et d’intrusion de dykes qui a succédé à la collision finale à 73–62 Ma doit être reliée à une rupture de la plaque lithosphérique sud-américaine à pendage ouest. Le magmatisme de 53 Ma et plus récent qui a succédé à la collision finale, a été généré par la subduction vers l’est de la lithosphère océanique du Pacifique sous l’Amérique du Sud. Des relations temporelles et spatiales similaires qui existent tout le long des deux Amériques représentent la collision terminale d’un ruban continental d’arcs avec les Amériques durant la phase tectonique laramienne de la fin du Crétacé–début du Tertiaire. Elle a donc séparé la subduction vers l’ouest de longue date de la période de subduction vers l’est plus jeune caractérisant la situation actuelle. Nous considérons que le ruban continental de la Cordillère s’est constitué durant le Mésozoïque au-dessus d’une zone majeure de convection descendante entre Tuzo et Jason, le long de la limite entre les plaques océaniques Panthalassique et Pacifique.
APA, Harvard, Vancouver, ISO, and other styles
5

Willner, Arne P., Axel Gerdes, Hans-Joachim Massonne, Cees R. Van Staal, and Alexandre Zagorevski. "Crustal Evolution of the Northeast Laurentian Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and During Closure of the Iapetus Ocean: Detrital Zircon U–Pb and Hf Isotope Evidence from Newfoundland." Geoscience Canada 41, no. 3 (August 29, 2014): 345. http://dx.doi.org/10.12789/geocanj.2014.41.046.

Full text
Abstract:
Detrital zircon populations in sedimentary rocks from the Laurentian margin and the accreted microcontinent Ganderia on both sides of the main Iapetus suture (Red Indian Line) in central Newfoundland have been studied by combined U–Pb and Lu–Hf isotope analyses. Variation in εHf(t) values with age of zircon populations of distal provenance (>900 Ma) reflect the crustal evolution within the source continents: in zircon derived from Laurentia, episodes of juvenile magma production in the source could be detected at 1.00 – 1.65 and 2.55 – 3.00 Ga, and mixing of juvenile and recycled crust in continental magmatic arcs occurred at 0.95 – 1.40, 1.45 – 1.60, 1.65 – 2.05 and 2.55 – 2.75 Ga. These ages are consistent with the crustal history of northeastern Laurentia. Similarly, zircon of distal provenance from Ganderia reveals times of juvenile magma production in the source at 0.70 – 0.90, 1.40 – 1.75, 1.85 – 2.40 and 2.7 – 3.5 Ga, and episodes of mixing juvenile and recycled crust at 0.95 – 1.35, 1.45 – 1.60, 1.70 – 2.15 and 2.6 – 2.8 Ga. These data reflect the crustal evolution in the present northern part of Amazonia, its likely source craton. The evolution of magmatic arcs at the margins of both continents can be studied in a similar way using detrital zircon having a proximal provenance (<900 Ma). In contrast to the Laurentian margin, Ganderia is characterized by development of Neoproterozoic – Cambrian continental arcs (ca. 500 – 670 Ma) that were built on the margin of Gondwana. εHf(t) values indicate recycling of Neo- and Mesoproterozoic crust. During and following accretion of the various elements of Ganderia to Laurentia, the syn-tectonic Late Ordovician to Silurian sedimentary rocks deposited on the upper plate (composite Laurentia) continued showing only detritus derived from Laurentia. These sedimentary rocks contain detrital zircon from Iapetan juvenile, continental and successor arcs that were active between ca. 440 and 550 Ma, and from continuing magmatic activity until 423 Ma. Arrival of the first Laurentian detritus at the outermost part of Ganderia indicates that the Iapetus ocean was closed at ca. 452 Ma. The magmatic arcs along the former Laurentian margin in Newfoundland evolved differently. In the northwestern part, εHf(t) values point to recycling of Mesoproterozoic and Paleoproterozoic crust. In the southwest, εHf(t) values indicate addition of juvenile crust, recycling of Mesoproterozoic crust and mixing with juvenile magma. SOMMAIRELes populations de zircons détritiques des roches sédimentaires issus de la marge laurentienne et du microcontinent d’accrétion de Ganderia, des deux côtés de la principale suture Iapetus (linéation de Red Indian) dans le centre de Terre-Neuve, ont été étudiés par analyses combinées U–Pb et Lu–Hf. Les variations des valeurs εHf(t) en fonction de l’âge des populations de zircons distaux (>900 Ma) reflètent l’évolution de la croûte des continents sources : les zircons de Laurentie ont permis de détecter des épisodes magmatiques juvéniles dans la source entre 1,00 - 1,5, et 2,55 - 3,00 Ga, ainsi que des épisodes de mélange de croûte juvénile avec des croûtes d’arcs magmatiques continentaux recyclés entre 0,95 – 1,40, 1,45 – 1,60, 1,65 – 2,05, et 2,55 – 2,75 Ga. Ces datations correspondent bien à l’histoire de la croûte de la portion nord-est de la Laurentie. De même, le zircon distal de Ganderia révèle des épisodes de production de magmas juvéniles dans la source entre 0,70 - 0,90, 1,40 - 1,75, 1,85 - 2,40, et 2,7 - 3,5 Ga, ainsi que des épisodes de mélanges de matériaux juvéniles et de croûtes recyclés entre 0,95 - 1,35, 1,45 - 1,60, 1,70 - 2,15, et 2,6 - 2,8 Ga. Ces données reflètent l’évolution de la croûte dans la portion nord actuelle de l’Amazonie, son craton source probable. L’évolution des arcs magmatiques à la marge de ces deux continents peuvent être étudiées de la même manière en utilisant le zircon détritique proximal (<900 Ma). Contrairement à la marge laurentienne, celle de Ganderia est caractérisée par le développement d’arcs continentaux Néoprotéozoïque-Cambrien (env. 500 – 670 Ma) qui se sont constitués à la marge du Gondvana. Les valeurs de εHf(t) indiquent un recyclage de la croûte au Néoprotérozoïque et au Mésoprotérozoïque. Durant et après l’accrétion des divers éléments de Ganderia et de la Laurentie, les roches sédimentaires syntectoniques de la fin de l’Ordovicien et du Silurien qui se sont déposées sur la portion supérieure de la plaque (Laurentie composite) ne montrent toujours que des débris provenant de la Laurentie. Ces roches sédimentaires renferment des zircons détritiques juvéniles iapétiques, et d’arcs continentaux et d’arcs subséquents, qui ont été actifs entreentre (env. 440 et 550 Ma) et d’une activité magmatique continue jusqu’à 423 Ma. L’apport des premiers débris à la marge extrême de Ganderia indique que l’océan s’est fermée il y a env. 452 Ma. Les arcs magmatiques le long de l'ancienne marge laurentienne à Terre-Neuve ont évolué différemment. Dans la portion nord-ouest, les valeurs de εHf(t) indiquent un recyclage de la croûte au Mésoprotérozoïque et au Paléoprotérozoïque. Dans la portion sud-ouest, les valeurs de εHf(t) indiquent l’ajout d’une croûte juvénile, un recyclage de la croûte mésoprotérozoïque et un mélange avec un magma juvénile.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magmatisme d’arc"

1

Jentzer, Michael. "The Sistan orogen (Eastern Iran) : Tectonic evolution and significance within the Tethyan realm." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS023.

Full text
Abstract:
La chaîne du Sistan (E-Iran) présente une orientation N-S atypique au sein des orogènes, essentiellement E-W, allant de la Grèce à la Birmanie, issus de la fermeture de la Néo-Téthys depuis ~175 Ma. L’objectif de ce travail a été de préciser l’histoire de ce domaine ophiolitique et ses relations avec les autres bassins d’Iran Central en lien avec la dynamique de la Néo-Téthys. L’ophiolite du Sistan résulte de la fermeture d’un paléo-océan (ultra)lent produit formé entre 124 et 106 Ma. Cette fermeture s’effectue dès 90 Ma par subduction vers le NE comme en atteste le magmatisme d’arc juvénile bimodal, calco-alcalin pauvre en K et adakitique, de l’Est de la chaîne, la vergence globale de la déformation et la position de la zone de suture de haute pression. La présence d’amphibolites de semelle métamorphique (~750°C-0.65 GPa) datées entre 74-72 Ma témoigne de l’initiation d’une subduction intra-océanique plongeant également vers le NE. Elle constitue l'élément déclencheur de l’obduction de l’ophiolite, achevée vers 50 Ma. La collision, marquée par un changement de sédimentation qui devient plus proximale à l’Eocène, n'a entraîné qu'une déformation assez modeste jusqu'à l'Oligocène, soit 30 à 40 km de raccourcissement. La déformation post-collisionnelle, plus restreinte encore, est contrôlée au moins depuis la fin du Miocène par un transfert de contrainte depuis la collision active du Zagros. En regard de l’histoire et de la géométrie des autres bassins ophiolitiques d’Iran, le Sistan semble avoir été un bassin indépendant, ouvert en pull-apart dans une zone de relais transtensif, vraisemblablement le long d’une zone décrochante héritée localisée entre l’Iran et l’Afghanistan
The N-S trending Sistan belt (E Iran) stretches N-S along ~700 km, at a high angle compared to the other Alpine-Himalayan ranges found along the Neotethyan suture zone. The aim of this study is to reappraise both the tectonic evolution of the Sistan orogen and its significance within the Neotethyan realm. The Sistan ophiolite, which started forming since 125 Ma, exhibits all the characteristics of present-day (ultra-)slow spreading environments. Closure of the Sistan ocean occurred through a major NE-dipping subduction zone active at least since 90 Ma, as indicated by (i) the location and age of bimodal juvenile arc magmatism, (ii) the regular SW vergence of the orogen and (iii) the location and age of subducted fragments. The discovery of 74-72 Ma metamorphic soles (~750°C-0.65 GPa) at the base of the ophiolite argues for the initiation of an intra-oceanic thrust/subduction zone, which ultimately led to the SW obduction of the ophiolite onto the Lut Block (mostly over by 50 Ma). Subsequent collision was marked by a drastic change of the Eocene sedimentation yet by only moderate shortening until the Oligocene (~30-40 km). Since the Late Miocene, post-collisional deformation appears strongly controlled by far-field stresses emanating from the Zagros collision. Given its orientation, petrological characteristics and age, the Sistan ocean probably opened as an independent pull apart basin along an inherited transform fault. The Sistan ocean also appears to have recorded the major geodynamic events which accompanied the closure of the Neo-Tethys, i.e. the major change in kinematics at ~90 Ma and the northward migration of India at ~75-70 Ma
APA, Harvard, Vancouver, ISO, and other styles
2

Flaherty, Taya Therese. "Study of crystal-hosted melt inclusions at Santorini (Greece), with implications for magma genesis and plumbing system processes." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC031.

Full text
Abstract:
Un grand nombre de volcans d’arc sont capables de produire des éruptions caldériques. Le volcan de Santorin (South Aegean Volcanic Arc, l’Égée-Méridionale, Grèce) est un volcan d’arc responsable de plusieurs éruptions de ce type au cours de ses 0,65 Ma d’activité, et dont l’éruption de l’Âge de Bronze Tardif (éruption Late Bronze Age, LBA) est la plus récente. Pourtant, de nombreuses questions sur le système volcanique de Santorin restent non résolues telles que la nature des magmas primaires et la manière dont leurs compositions changent au cours du temps, l’origine des magmas intermédiaires et acides, les raisons des tendances géochimiques des magmas acides observées sur le long terme, et la nature des changements se produisant dans le système magmatique dans la période précédant une grande éruption caldérique. Dans cette thèse, je présente un large ensemble de données de haute précision sur les inclusions vitreuses et les verres matriciels, afin de répondre aux questions relatives à la genèse et l’évolution des magmas du Santorin.Notre échantillonnage est composé de nombreuses inclusions vitreuses piégées dans des cristaux d’olivine dont les compositions basaltiques primitives sont rarement représentées par les roches totales du Santorin et plus généralement de l’ensemble de l’arc volcanique. Ces inclusions vitreuses révèlent qu’il existe une gamme de teneurs en éléments en traces incompatibles dans les magmas basaltiques les plus primitifs du Santorin. Les inclusions primitives présentent une signature géochimique typique des magmas de zone de subduction. La gamme des compositions varie d’appauvri à enrichi en éléments incompatibles, appelés type low Nb et type high Nb. Les rapports La/Yb des inclusions vitreuses primitives sont compris entre 1,5 (plat, de genre tholéitique) dans le type low Nb et 3,2 (incliné, de genre calco-alcalin) dans le type high Nb. Nous avons calculé les compositions des liquides magmatiques primaires en utilisant différentes méthodes et nous avons mis en évidence que les liquides primaires parentaux des magmas de types low Nb et high Nb sont respectivement appauvris et enrichis en éléments incompatibles. Les différents types de magmas primitifs ne peuvent pas être expliqués par la cristallisation fractionnée de l’un de ces magmas, mais sont plutôt associés à différents degrés de fusion partielle du manteau. Nous avons déterminé les degrés de fusion partielle (F) du manteau en utilisant le logiciel de modélisation petro-génétique PRIMACALC2 (F = 6% pour les liquides silicatés primaires high Nb, F = 8% pour les liquides silicatés primaires low Nb) et en effectuant des modèles de fusion partielle du manteau (F = 18% pour les liquides silicatés primaires high Nb, F = 22% pour les liquides silicatés primaires low Nb). Les valeurs de F obtenues à partir de ces deux approches diffèrent. Cependant, les résultats obtenus montrent qu’une différence dans le degré de fusion partielle du manteau peut expliquer la gamme des compositions observée entre les différents types de magmas primitifs. La signature métasomatique prédominante dans les liquides primaires provient de la fusion partielle des sédiments de la plaque plongeante. Il y a peu de preuves de l’influence de fluides aqueux provenant de la plaque plongeante. Il y a peut-être une influence du rutile résiduel, mais celle-ci ne domine pas l’origine des différentes séries. Il n’existe aucune tendance temporelle cohérente dans les magmas basaltiques parentaux au cours du temps, ce qui suggère que les différents types de magmas primaires sont restés disponibles pour l’ascension dans la croûte durant la plupart de l’histoire du volcanisme du Santorin. (...)
Many arc volcanoes are capable of producing devastating caldera-forming eruptions. Santorini Volcano (South Aegean Volcanic Arc, southern Aegean Sea, Greece) is an arc volcano responsible for numerous such eruptions over its >0.65 My history, the most recent being the Late Bronze Age (LBA) eruption. However, there are a number of unresolved questions relating to the Santorini volcanic system including the nature of the primary magmas of Santorini and how they change with time, differentiation processes and the relationship between mafic and silicic magmas, the origins of long-term geochemical trends in magma composition, and what changes occur in the plumbing system during the build-up to a large caldera-forming eruption. In this thesis, I present a large set of high-resolution crystal-hosted melt inclusion (MI) and groundmass glass data to address these questions relating to the nature of magma genesis and differentiation at Santorini.The dataset includes many olivine-hosted MIs of primitive basaltic composition, which are rare as whole rocks on Santorini and in the volcanic arc in general. These MIs show there is a range in the incompatible trace element chemistry of the most primitive basaltic melts at Santorini. Primitive MIs have typical subduction zone geochemical signatures and vary between incompatible-poor and incompatible-rich types, which we refer to as low Nb and high Nb primitive melt types, respectively. The primitive MIs range in La/Yb from 1.5 (flat, tholeiitic-like) in the low Nb type to 3.2 (inclined, calc-alkaline-like) in the high Nb type. We back-calculate primary melt compositions using different methods and find that the primary melts parental to the low Nb and high Nb MIs have respectively low Nb and high Nb characteristics. The low Nb and high Nb type primitive melts cannot be related by fractional crystallization but are instead related by different degrees of partial melting of the mantle. We derived the degree of mantle partial melting (F) using the petrogenetic modelling software PRIMACALC2 (F = 6% for high Nb primary melt; F= 8% for low Nb primary melt) and carrying out mantle melting models (F = 18% for high Nb primary melt; F = 22% for low Nb primary melt). The two approaches differ in F but agree that a different degree of melting can explain the compositional variation between the two endmember Nb melt types. The predominant metasomatic signature in the primary melts is from melting of sediment in the subducted slab; there is very little evidence for slab-derived aqueous fluids. There may be some influence from residual rutile in the slab, but this does not dominate the different Nb groupings. There is no consistent temporal change in the primary basaltic melts with time, suggesting that the two different endmember primary melts have been available for ascent into the crust over much of the history of the volcano. We conclude that at least two mantle source domains exist below Santorini: a source giving way to low Nb primary melts (characterized by higher sediment melt signatures and a higher degree of partial melting) and one giving rise to high Nb primary melt (characterized by a smaller, yet still prominent, sediment melt signature and associated with a few percent less melting). The absence of a strong slab-derived aqueous fluid component, coupled with the presence of arc tholeiitic compositions and regional extension around the volcanic field, suggests there could be a role of decompression melting beneath Santorini. (...)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography