Journal articles on the topic 'Maggiore, Lago, in art'

To see the other types of publications on this topic, follow the link: Maggiore, Lago, in art.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Maggiore, Lago, in art.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bugini, Roberto, and Luisa Folli. "Ubicazione delle cave di pietra da calce utilizzata come materia prima degli intonaci romani nella Lombardia occidentale." Arqueología de la Arquitectura, no. 13 (January 17, 2017): 049. http://dx.doi.org/10.3989/arq.arqt.2016.167.

Full text
Abstract:
[it] La calce come materiale da costruzione ebbe larga diffusione nell’architettura romana della Lombardia occidentale. La presenza di carbonato di magnesio è stata per lo più riscontrata negli intonaci dipinti provenienti dai siti romani di Milano. Il carbonato di magnesio testimonia l’impiego di dolomia per la preparazione della calce e rocce di questa composizione affiorano per esteso nelle Prealpi lombarde: dolomie e calcari dolomitici grigio chiari (Dolomia del Salvatore, Ladinico-Anisico), dolomie grigie, talvolta con ciclotemi (Dolomia principale, Norico). Non sono conservate evidenze di cave o di forni romani in quest’area prealpina: i Romani sfruttarono gli stessi affioramenti dolomitici, situati lungo la sponda orientale del lago Maggiore, affioramenti da cui si produsse calce a partire dal Medio Evo in avanti. I depositi fluvio-glaciali del medio corso del fiume Adda tra Brivio e Trezzo (massi, ciottoli di calcari marnosi, calcari e dolomie che affiorano nel bacino fluviale) furono un’altra fonte medievale e moderna di materia prima, soprattutto per produrre una calce debolmente idraulica (chiamata “calce forte”), ma questo tipo di calce è assente negli intonaci romani.
APA, Harvard, Vancouver, ISO, and other styles
2

Steinecke, Hilke. "Frank Erdnüss: Blütenpracht am Lago Maggiore." Der Palmengarten 74, no. 2 (June 14, 2018): 160. http://dx.doi.org/10.21248/palmengarten.416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kotzias, Dimitrios, and Elke Anklam. "Gemeinsam für Europa am Lago Maggiore." Nachrichten aus der Chemie 55, no. 10 (October 2007): 991–94. http://dx.doi.org/10.1002/nadc.200748084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Erdnüß, Frank. "Exoten am Lago Maggiore. Die Exkursion." Biologie in unserer Zeit 41, no. 1 (February 2011): 61–68. http://dx.doi.org/10.1002/biuz.201110443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stucki, Peter, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, et al. "Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868." Natural Hazards and Earth System Sciences 18, no. 10 (October 23, 2018): 2717–39. http://dx.doi.org/10.5194/nhess-18-2717-2018.

Full text
Abstract:
Abstract. Heavy precipitation on the south side of the central Alps produced a catastrophic flood in October 1868. We assess the damage and societal impacts, as well as the atmospheric and hydrological drivers using documentary evidence, observations and novel numerical weather and runoff simulations. The greatest damage was concentrated close to the Alpine divide and Lago Maggiore. An atmospheric reanalysis emphasizes the repeated occurrence of streamers of high potential vorticity as precursors of heavy precipitation. Dynamical downscaling indicates high freezing levels (4000 m a.s.l.), extreme precipitation rates (max. 270 mm 24 h−1) and weather dynamics that agree well with observed precipitation and damage, and with existing concepts of forced low-level convergence, mid-level uplift and iterative northeastward propagation of convective cells. Simulated and observed peak levels of Lago Maggiore differ by 2 m, possibly because the exact cross section of the lake outflow is unknown. The extreme response of Lago Maggiore cannot be attributed to low forest cover. Nevertheless, such a paradigm was adopted by policy makers following the 1868 flood, and used to implement nationwide afforestation policies and hydraulic structures. These findings illustrate the potential of high-resolution, hydrometeorological models – strongly supported by historical methods – to shed new light on weather events and their socio-economic implications in the 19th century.
APA, Harvard, Vancouver, ISO, and other styles
6

Bertoni, Roberto. "Size distribution of particulate organic carbon in Lago Maggiore." SIL Proceedings, 1922-2010 27, no. 5 (December 2000): 2836–39. http://dx.doi.org/10.1080/03680770.1998.11898185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

de Bernardi, R., G. Giussani, M. Manca, and D. Ruggiu. "Trophic status and the pelagic system in Lago Maggiore." Hydrobiologia 191, no. 1 (February 1990): 1–8. http://dx.doi.org/10.1007/bf00026032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morabito, Giuseppe, Alessandro Oggioni, Emanuele Caravati, and Pierisa Panzani. "Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy)." Hydrobiologia 578, no. 1 (March 2007): 47–57. http://dx.doi.org/10.1007/s10750-006-0432-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bernardi, Riccardo de, and Sven E. Jorgensen. "Exergy content in the pelagic food chain of Lago Maggiore." Lakes and Reservoirs: Research and Management 3, no. 2 (June 1998): 135–38. http://dx.doi.org/10.1111/j.1440-1770.1998.tb00040.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Putyrskaya, V., E. Klemt, S. Röllin, J. A. Corcho-Alvarado, and H. Sahli. "Dating of recent sediments from Lago Maggiore and Lago di Lugano (Switzerland/Italy) using 137Cs and 210Pb." Journal of Environmental Radioactivity 212 (February 2020): 106135. http://dx.doi.org/10.1016/j.jenvrad.2019.106135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ambrosetti, Walter, Luigi Barbanti, and Angelo Rolla. "THE CLIMATE OF LAGO MAGGIORE AREA DURING THE LAST FIFTY YEARS." Journal of Limnology 65, no. 1s (September 1, 2006): 1. http://dx.doi.org/10.4081/jlimnol.2006.s1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

de Bernardi, R., G. Giussani, M. Manca, and D. Ruggiu. "Long-term dynamics of plankton communities in Lago Maggiore (N. Italy)." SIL Proceedings, 1922-2010 23, no. 2 (August 1988): 729–33. http://dx.doi.org/10.1080/03680770.1987.11899700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

AMBROSETTI, Walter, Luigi BARBANTI, and Elisabetta A. CARRARA. "Mechanisms of hypolimnion erosion in a deep lake (Lago Maggiore, N. Italy)." Journal of Limnology 69, no. 1 (February 1, 2010): 3. http://dx.doi.org/10.4081/jlimnol.2010.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

VISCONTI, Anna, and Marina MANCA. "The invasive appearance of Eudiaptomus gracilis (G.O. Sars 1863) in Lago Maggiore." Journal of Limnology 69, no. 2 (August 1, 2010): 353. http://dx.doi.org/10.4081/jlimnol.2010.353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lodari, Renata. "Villa San Remigio a Verbania nel paesaggio dei giardini del Lago Maggiore." Italies, no. 8 (November 1, 2004): 39–50. http://dx.doi.org/10.4000/italies.2013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Morabito, Giuseppe, Alessandro Oggioni, and Emanuele Caravati. "Decadal trends of pelagic algal biomass capacities in Lago Maggiore (N. Italy)." SIL Proceedings, 1922-2010 29, no. 1 (March 2005): 231–34. http://dx.doi.org/10.1080/03680770.2005.11902003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Callieri, C. "Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy." Journal of Plankton Research 24, no. 8 (August 1, 2002): 785–96. http://dx.doi.org/10.1093/plankt/24.8.785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

BARBIERI, Alberto, Mauro VERONESI, Marco SIMONA, Stefano MALUSARDI, and Viera STRAŠKRABOVÁ. "Limnological survey in eight high mountain lakes located in Lago Maggiore watershed (Switzerland)." Journal of Limnology 58, no. 2 (August 1, 1999): 179. http://dx.doi.org/10.4081/jlimnol.1999.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

CALLIERI, C., and R. PISCIA. "Photosynthetic efficiency and seasonality of autotrophic picoplankton in Lago Maggiore after its recovery." Freshwater Biology 47, no. 5 (April 25, 2002): 941–56. http://dx.doi.org/10.1046/j.1365-2427.2002.00821.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Menziani, M., S. Pugnaghi, L. Pilan, R. Santangelo, and S. Vincenzi. "TDR soil moisture measurements at the Lago Maggiore MAP target area: preliminary results." Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26, no. 5-6 (2001): 431–36. http://dx.doi.org/10.1016/s1464-1909(01)00031-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Manca, Marina, and Anna Galli Tognota. "Seasonal changes in morphology and size of Daphnia hyalina Leydig in Lago Maggiore." Hydrobiologia 264, no. 3 (July 1993): 159–67. http://dx.doi.org/10.1007/bf00007286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

GALASSI, Silvana, Pietro VOLTA, Alcide CALDERONI, and Licia GUZZELLA. "Cycling pp'DDT and pp'DDE at a watershed scale: the case of Lago Maggiore (Italy)." Journal of Limnology 65, no. 2 (August 1, 2006): 100. http://dx.doi.org/10.4081/jlimnol.2006.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

de Bernardi, R., G. Giussani, and M. Manca. "Seasonal evolution of Cladocera in Lago Maggiore (N. Italy) as influenced by environmental parameters." SIL Proceedings, 1922-2010 23, no. 1 (January 1988): 530–34. http://dx.doi.org/10.1080/03680770.1987.11897975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

VISCONTI, Anna, and Marina MANCA. "Seasonal changes in the δ13C and δ15N signatures of the Lago Maggiore pelagic food web." Journal of Limnology 70, no. 2 (August 1, 2011): 263. http://dx.doi.org/10.4081/jlimnol.2011.263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

MANCA, Marina. "Invasions and re-emergences: an analysis of the success of Bythotrephes in Lago Maggiore (Italy)." Journal of Limnology 70, no. 1 (February 1, 2011): 76. http://dx.doi.org/10.4081/jlimnol.2011.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Panziera, L., C. N. James, and U. Germann. "Mesoscale organization and structure of orographic precipitation producing flash floods in the Lago Maggiore region." Quarterly Journal of the Royal Meteorological Society 141, no. 686 (April 3, 2014): 224–48. http://dx.doi.org/10.1002/qj.2351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bravničar, Jernej, Anja Palandačić, Simona Sušnik Bajec, and Aleš Snoj. "Neotype designation for Thymallus aeliani Valenciennes, 1848 from a museum topotype specimen and its affiliation with Adriatic grayling on the basis of mitochondrial DNA." ZooKeys 999 (November 30, 2020): 165–78. http://dx.doi.org/10.3897/zookeys.999.56636.

Full text
Abstract:
In 1848, the grayling Thymallus aeliani (Valenciennes) was described from Lake Maggiore, Italy, in the north Adriatic basin. Genetic analyses of the mitochondrial control region showed a unique evolutionary history of grayling inhabiting the rivers of northern Adriatic basin, from the upper reaches of the Po River and its left tributaries in the west to the Soča River in the east, which resulted in the designation of this phylogenetic lineage as Adriatic grayling. Consequently, the name T. aeliani was connected to the Adriatic lineage, re-establishing the validity of this taxon. However, the mitochondrial haplotypes belonging to Adriatic grayling were never compared with the type specimens of T. aeliani, as their whereabouts were unknown. In this study, a neotype for T. aeliani was designated using topotypical specimens stored at the Natural History Museum in Vienna. The neotype (NMW 68027:2 labelled as “Lago Maggiore, Bellotti, 1880”) was designated pursuant to the conditions stipulated in Article 75.3 of the International Code of Zoological Nomenclature. Furthermore, the mitochondrial control region of the neotype was compared to haplotypes of the Adriatic lineage and showed high genetic similarity, which therefore connects the species name T. aeliani to the Adriatic grayling. This crucial step in fixing nomenclatural status of this species is very important for its protection and management.
APA, Harvard, Vancouver, ISO, and other styles
28

Putyrskaya, Victoria, Eckehard Klemt, and Stefan Röllin. "Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) – analysis and comparison with Lago di Lugano and other lakes." Journal of Environmental Radioactivity 100, no. 1 (January 2009): 35–48. http://dx.doi.org/10.1016/j.jenvrad.2008.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ciampittiello, M., H. Saidi, C. Dresti, M. Coluccino, L. Turconi, W. W. Little, and F. Luino. "Landslides along the Lago Maggiore western coast (northern Italy): intense rainfall as trigger or concomitant cause?" Natural Hazards 107, no. 2 (February 22, 2021): 1225–50. http://dx.doi.org/10.1007/s11069-021-04626-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

MARCHETTO, Aldo, and Simona MUSAZZI. "Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy): implications of using transfer functions." Journal of Limnology 60, no. 1 (February 1, 2001): 19. http://dx.doi.org/10.4081/jlimnol.2001.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

KAMENIR, Yury, and Giuseppe MORABITO. "Lago Maggiore oligotrophication as seen from the long-term evolution of its phytoplankton taxonomic size structure." Journal of Limnology 68, no. 1 (February 1, 2009): 146. http://dx.doi.org/10.4081/jlimnol.2009.146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Omair, M., Henry A. Vanderploeg, David J. Jude, and Gary L. Fahnenstiel. "First observations of tumor-like abnormalities (exophytic lesions) on Lake Michigan zooplankton." Canadian Journal of Fisheries and Aquatic Sciences 56, no. 10 (October 1, 1999): 1711–15. http://dx.doi.org/10.1139/f99-146.

Full text
Abstract:
Tumor-like abnormalities (exophytic lesions) were found on a variety of planktonic calanoid copepods and cladocerans (Diaptomus spp., Epischura lacustris, Limnocalanus macrurus, Polyphemus pediculus, Diaphanosoma sp., and Daphnia galeata mendotae) collected from inshore (3-m depth contour) and offshore (100- to 110-m depth contours) stations of eastern Lake Michigan. The abnormalities, which were quite large relative to animal size and variable in shape, are documented in photographs. Abnormality incidences among species ranged between 0 and 72%. Predatory species of calanoids and cladocerans had higher incidences of tumors than herbivorous species. The abnormalities on some copepods were very similar to cysts described for calanoid copepods in Lago Maggiore, Italy, which like Lake Michigan is undergoing oligotrophication. The recent appearance of the lesions in Europe and North America may indicate an emerging global phenomenon that has a common cause.
APA, Harvard, Vancouver, ISO, and other styles
33

BERTONI, Roberto, Roberta PISCIA, and Cristiana CALLIERI. "Horizontal heterogeneity of seston, organic carbon and picoplankton in the photic zone of Lago Maggiore, Northern Italy." Journal of Limnology 63, no. 2 (August 1, 2004): 244. http://dx.doi.org/10.4081/jlimnol.2004.244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

VOLTA, Pietro, and Niels JEPSEN. "The recent invasion of Rutilus rutilus (L.) (Pisces: Cyprinidae) in a large South- Alpine lake: Lago Maggiore." Journal of Limnology 67, no. 2 (August 1, 2008): 163. http://dx.doi.org/10.4081/jlimnol.2008.163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

VISCONTI, Anna, Marina MANCA, and Riccardo DE BERNARDI. "Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years." Journal of Limnology 67, no. 2 (August 1, 2008): 87. http://dx.doi.org/10.4081/jlimnol.2008.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Guilizzoni, Piero, Suzanne N. Levine, Marina Manca, Aldo Marchetto, Andrea Lami, Walter Ambrosetti, Achim Brauer, et al. "Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches." Journal of Limnology 71, no. 1 (January 19, 2012): 1. http://dx.doi.org/10.4081/jlimnol.2012.e1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

CASTELLANO, Leonardo, Walter AMBROSETTI, Luigi BARBANTI, and Angelo ROLLA. "The residence time of the water in Lago Maggiore (N. Italy): first results from an Eulerian-Lagrangian approach." Journal of Limnology 69, no. 1 (February 1, 2010): 15. http://dx.doi.org/10.4081/jlimnol.2010.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Morabito, Giuseppe, Alessandro Oggioni, and Pierisa Panzani. "Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: a case study from Lago Maggiore (N. Italy)." Hydrobiologia 502, no. 1-3 (July 2003): 37–48. http://dx.doi.org/10.1023/b:hydr.0000004268.17068.dc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Markey, T. L. "Early celticity in Slovenia and at rhaetic Magrè (Schio)." Linguistica 46, no. 1 (December 1, 2006): 145–72. http://dx.doi.org/10.4312/linguistica.46.1.145-172.

Full text
Abstract:
From the area around lakes Maggiore and Como in the west clear across the northern alpine crest of the Italian peninsula to the Balkans (albeit primarily in Slovenia) in the east we find the following varieties of early Continental Celtic: Golaseccan ILepontic (with highly archaic features by virtue of dramatically early attestation, ca. 550-350 BC); Camunic (meagerly recorded, etymologically opaque, but, if anything, probably mainly Celtic) in Valcamonica north of Lago d'Iseo, also beginning about 550 BC; Rhaeto­ Celtic (also but fragmentarily recorded, ca. 450-40 BC) from various sites such as Vadena (Pfatten) south of Bolzano (Bozen) in the Fritzens Sanseno and Magre Horizons; Carnian (northward from Udine, evidenced chiefly by onomastics, e.g. present-day Cadore < *Catubrigum 'battle-mount') and East Celtic in southwestern Austria and the Balkans (again but fragmentarily retrievable from, for example, Magdalensberg and the onomastics retrievable from Roman necropoli such as that at lg south of the Ljubljana marshes; see Hamp [1976, 1978]).
APA, Harvard, Vancouver, ISO, and other styles
40

Caser, M., A. Berruti, R. Bizioli, V. Bianciotto, M. Devecchi, and V. Scariot. "Floriculture and territory – the protection of the traditional Italian tipicity: the case of “La Camelia del Lago Maggiore (PGI)”." Acta Horticulturae, no. 1191 (February 2018): 241–50. http://dx.doi.org/10.17660/actahortic.2018.1191.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

KÄMPF, LUCAS, ACHIM BRAUER, PETER DULSKI, ANDREA LAMI, ALDO MARCHETTO, STEFANO GERLI, WALTER AMBROSETTI, and PIERO GUILIZZONI. "Detrital layers marking flood events in recent sediments of Lago Maggiore (N. Italy) and their comparison with instrumental data." Freshwater Biology 57, no. 10 (May 3, 2012): 2076–90. http://dx.doi.org/10.1111/j.1365-2427.2012.02796.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Manca, M. "Exotopic protrusions and ellobiopsid infection in zooplanktonic copepods of a large, deep subalpine lake, Lago Maggiore, in northern Italy." Journal of Plankton Research 26, no. 11 (June 16, 2004): 1257–63. http://dx.doi.org/10.1093/plankt/fbh117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Manca, Marina, Claudio Ramoni, and Patrizia Comoli. "The decline of Daphnia hyalina galeata in Lago Maggiore: a comparison of the population dynamics before and after oligotrophication." Aquatic Sciences 62, no. 2 (August 2000): 142–53. http://dx.doi.org/10.1007/pl00001328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Georgis, Jean-François, Frank Roux, Michel Chong, and Stephanie Pradier. "Triple-Doppler radar analysis of the heavy rain event observed in the Lago Maggiore region during MAP IOP 2b." Quarterly Journal of the Royal Meteorological Society 129, no. 588 (January 1, 2003): 495–522. http://dx.doi.org/10.1256/qj.02.46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Andjelkovic, Sladjana, Cedo Vuckovic, Suzana Milutinovic, Tomislav Palibrk, Marko Kadija, and Marko Bumbasirevic. "Giovanni Battista Monteggia (1762-1815)." Srpski arhiv za celokupno lekarstvo 143, no. 1-2 (2015): 105–7. http://dx.doi.org/10.2298/sarh1502105a.

Full text
Abstract:
Giovanni Battista Monteggia was born in Laverne on the 8th of August 1762. Monteggia started his education in the School of Surgery at the Hospital Maggiore in Milano in 1779. This hospital was called ?Big House? and it is one of the oldest medical institutions in Italy. He passed exam in surgery in 1781. Monteggia was promoted to assistant at surgery in Maggiore hospital in 1790. He was among the first who gave a complete clinical description of polio. He described traumatic hip dislocation and special forearm fracture which was named after him. Strictly speaking, a Monteggia fracture is a fracture of the proximal third of the ulna with an anterior dislocation of the radial head. Monteggia became a member of the renewed Institute of Science, Literature and Art in Milano in 1813.
APA, Harvard, Vancouver, ISO, and other styles
46

Fieni, Laura. "THE ART OF BUILDING IN MILAN DURING LATE ANTIQUITY: SAN LORENZO MAGGIORE." Late Antique Archaeology 4, no. 1 (2008): 407–33. http://dx.doi.org/10.1163/22134522-90000096.

Full text
Abstract:
This study of the complex of San Lorenzo in Milan draws on archaeological and archaeometric evidence. It presents the results of a recent investigation into late antique masonry techniques at San Lorenzo, which looked at stone and brick masonry techniques, the various type of foundation systems and the building techniques responsible for the structure as a whole. The archaeological element of the paper is based on a stratigraphical analysis of the entire complex, including its stone foundations, pavements, brickwork, vaulting and plasterwork; research on bricklaying, stone-cutting and masonry techniques; and the dating of its windows, doors, and frames. At the same time, the archaeometric aspect of the paper comprises the typological categorisation of the building materials identified at the site. These include stones, bricks, and the ingredients of bonding sections, mortar work and plastering. The origins and dating of these materials will also be an important part of the paper. Dating was carried out using TL and 14C methods.
APA, Harvard, Vancouver, ISO, and other styles
47

Manca, Marina, Patrizia Comoli, and Teresa Spagnuolo. "Length-specific carbon content of theDaphnia population in a large subalpine lake, Lago Maggiore (Northern Italy): The importance of seasonality." Aquatic Sciences 59, no. 1 (March 1997): 48–56. http://dx.doi.org/10.1007/bf02522550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bacchi, Baldassare, and Roberto Ranzi. "Hydrological and meteorological aspects of floods in the Alps: an overview." Hydrology and Earth System Sciences 7, no. 6 (December 31, 2003): 785–98. http://dx.doi.org/10.5194/hess-7-785-2003.

Full text
Abstract:
Abstract. This introductory paper presents and summarises recent research on meteorological and hydrological aspects of floods in the Alps. The research activities were part of the international research project RAPHAEL (Runoff and Atmospheric Processes for flood HAzard forEcasting and controL) together with experiments within the Special Observing Period-SOP conducted in autumn 1999 for the Mesoscale Alpine Programme —MAP. The investigations were based on both field experiments and numerical simulations, using meteorological and hydrological models, of ten major floods that occurred in the past decade in the European Alps. The two basins investigated were the Ticino (6599 km2) at the Lago Maggiore outlet on the southern side of the Alps and the Ammer catchment (709 km2) in the Bavarian Alps. These catchments and their sub-catchments cover an appropriate range of spatial scales with which to investigate and test in an operational context the potential of both mesoscale meteorological and distributed hydrological models for flood forecasting. From the data analyses and model simulations described in this Special Issue, the major sources of uncertainties for flood forecasts in mid-size mountain basins are outlined and the accuracy flood forecasts is assessed. Keywords: floods, mountain hydrology, meteorological models, Alps
APA, Harvard, Vancouver, ISO, and other styles
49

Manca, Marina, Patrizia Comoli, and Teresa Spagnuolo. "Length-specific carbon content of the Daphnia population in a large subalpine lake, Lago Maggiore (Northern Italy): The importance of seasonality." Aquatic Sciences 59, no. 1 (April 1997): 48–56. http://dx.doi.org/10.1007/pl00001306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Asencio, N., J. Stein, M. Chong, and F. Gheusi. "Analysis and simulation of local and regional conditions for the rainfall over the Lago Maggiore Target Area during MAP IOP 2b." Quarterly Journal of the Royal Meteorological Society 129, no. 588 (January 1, 2003): 565–86. http://dx.doi.org/10.1256/qj.02.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography