To see the other types of publications on this topic, follow the link: Macroscale superlubricity.

Journal articles on the topic 'Macroscale superlubricity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 28 journal articles for your research on the topic 'Macroscale superlubricity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Urbakh, Michael. "Towards macroscale superlubricity." Nature Nanotechnology 8, no. 12 (November 3, 2013): 893–94. http://dx.doi.org/10.1038/nnano.2013.244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Zhenyu, Yuefeng Du, Siling Huang, Fanning Meng, Leilei Chen, Wenxiang Xie, Keke Chang, et al. "Macroscale Superlubricity: Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces (Adv. Sci. 4/2020)." Advanced Science 7, no. 4 (February 2020): 2070023. http://dx.doi.org/10.1002/advs.202070023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berman, D., S. A. Deshmukh, S. K. R. S. Sankaranarayanan, A. Erdemir, and A. V. Sumant. "Macroscale superlubricity enabled by graphene nanoscroll formation." Science 348, no. 6239 (May 14, 2015): 1118–22. http://dx.doi.org/10.1126/science.1262024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Zhenyu, Yuefeng Du, Siling Huang, Fanning Meng, Leilei Chen, Wenxiang Xie, Keke Chang, et al. "Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces." Advanced Science 7, no. 4 (January 19, 2020): 1903239. http://dx.doi.org/10.1002/advs.201903239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Tianyi, Chenhui Zhang, and Jianbin Luo. "Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions." Langmuir 34, no. 38 (September 3, 2018): 11281–91. http://dx.doi.org/10.1021/acs.langmuir.8b01722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Qiang, Tao He, Arman Mohammad Khan, Q. Wang, and Yip-Wah Chung. "Achieving macroscale liquid superlubricity using glycerol aqueous solutions." Tribology International 160 (August 2021): 107006. http://dx.doi.org/10.1016/j.triboint.2021.107006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reddyhoff, Tom, James P. Ewen, Pushkar Deshpande, Mark D. Frogley, Mark D. Welch, and Wren Montgomery. "Macroscale Superlubricity and Polymorphism of Long-Chain n-Alcohols." ACS Applied Materials & Interfaces 13, no. 7 (February 10, 2021): 9239–51. http://dx.doi.org/10.1021/acsami.0c21918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Yu, Hui Mei, Peng Chang, Yubo Yang, Weifeng Huang, Ying Liu, Laifei Cheng, and Litong Zhang. "3D-Printed Topological MoS2/MoSe2 Heterostructures for Macroscale Superlubricity." ACS Applied Materials & Interfaces 13, no. 29 (July 19, 2021): 34984–95. http://dx.doi.org/10.1021/acsami.1c09524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yanfei, Jinjin Li, Xiangyu Ge, Shuang Yi, Hongdong Wang, Yuhong Liu, and Jianbin Luo. "Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol." ACS Applied Materials & Interfaces 12, no. 16 (April 1, 2020): 18859–69. http://dx.doi.org/10.1021/acsami.0c01515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Qiang, Shijian Wang, and Guangneng Dong. "Macroscale liquid superlubricity achieved with mixtures of fructose and diols." Wear 484-485 (November 2021): 204037. http://dx.doi.org/10.1016/j.wear.2021.204037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Zhongnan, Jinjin Li, Yuhong Liu, and Jianbin Luo. "Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water." Materials & Design 188 (March 2020): 108441. http://dx.doi.org/10.1016/j.matdes.2019.108441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ren, Xiaoyong, Xiao Yang, Guoxin Xie, and Jianbin Luo. "Black Phosphorus Quantum Dots in Aqueous Ethylene Glycol for Macroscale Superlubricity." ACS Applied Nano Materials 3, no. 5 (April 27, 2020): 4799–809. http://dx.doi.org/10.1021/acsanm.0c00841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tang, Gongbin, Zhibin Wu, Fenghua Su, Haidou Wang, Xing Xu, Qiang Li, Guozheng Ma, and Paul K. Chu. "Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus." Nano Letters 21, no. 12 (June 2, 2021): 5308–15. http://dx.doi.org/10.1021/acs.nanolett.1c01437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Saravanan, Prabakaran, Roman Selyanchyn, Hiroyoshi Tanaka, Durgesh Darekar, Aleksandar Staykov, Shigenori Fujikawa, Stephen Matthew Lyth, and Joichi Sugimura. "Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments." ACS Applied Materials & Interfaces 8, no. 40 (September 28, 2016): 27179–87. http://dx.doi.org/10.1021/acsami.6b06779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yi, Shuang, Jinjin Li, Yanfei Liu, Xiangyu Ge, Jie Zhang, and Jianbin Luo. "In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity." Tribology International 154 (February 2021): 106695. http://dx.doi.org/10.1016/j.triboint.2020.106695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ge, Xiangyu, Jinjin Li, Rui Luo, Chenhui Zhang, and Jianbin Luo. "Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol." ACS Applied Materials & Interfaces 10, no. 47 (November 2, 2018): 40863–70. http://dx.doi.org/10.1021/acsami.8b14791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Han, Tianyi, Chenhui Zhang, Xinchun Chen, Jinjin Li, Weiqi Wang, and Jianbin Luo. "Contribution of a Tribo-Induced Silica Layer to Macroscale Superlubricity of Hydrated Ions." Journal of Physical Chemistry C 123, no. 33 (July 18, 2019): 20270–77. http://dx.doi.org/10.1021/acs.jpcc.9b03762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Jinjin, Xiangyu Ge, and Jianbin Luo. "Random occurrence of macroscale superlubricity of graphite enabled by tribo-transfer of multilayer graphene nanoflakes." Carbon 138 (November 2018): 154–60. http://dx.doi.org/10.1016/j.carbon.2018.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Yanfei, Jianfeng Li, Jinjin Li, Shuang Yi, Xiangyu Ge, Xin Zhang, and Jianbin Luo. "Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide." ACS Applied Materials & Interfaces 13, no. 27 (June 30, 2021): 31947–56. http://dx.doi.org/10.1021/acsami.1c04664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yi, Shuang, Xinchun Chen, Jinjin Li, Yanfei Liu, Songlin Ding, and Jianbin Luo. "Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives." Carbon 176 (May 2021): 358–66. http://dx.doi.org/10.1016/j.carbon.2021.01.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ge, Xiangyu, Jinjin Li, Hongdong Wang, Chenhui Zhang, Yuhong Liu, and Jianbin Luo. "Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid." Carbon 151 (October 2019): 76–83. http://dx.doi.org/10.1016/j.carbon.2019.05.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Panpan, Li Ji, Hongxuan Li, Lei Chen, Xiaohong Liu, Huidi Zhou, and Jianmin Chen. "Role of nanoparticles in achieving macroscale superlubricity of graphene/nano-SiO2 particle composites." Friction, August 17, 2021. http://dx.doi.org/10.1007/s40544-021-0532-2.

Full text
Abstract:
AbstractRecent studies have reported that adding nanoparticles to graphene enables macroscale superlubricity to be achieved. This study focuses on the role of nanoparticles in achieving superlubricity. First, because graphene nanoscrolls can be formed with nanoparticles as seeds under shear force, the applied load (or shear force) is adjusted to manipulate the formation of graphene nanoscrolls and to reveal the relationship between graphene-nanoscroll formation and superlubricating performance. Second, the load-carrying role of spherical nano-SiO2 particles during the friction process is verified by comparison with an elaborately designed fullerene that possesses a hollow-structured graphene nanoscroll. Results indicate that the incorporated nano-SiO2 particles have two roles in promoting the formation of graphene nanoscrolls and exhibiting load-carrying capacity to support macroscale forces for achieving macroscale superlubricity. Finally, macroscale superlubricity (friction coefficient: 0.006–0.008) can be achieved under a properly tuned applied load (2.0 N) using a simple material system in which a graphene/nano-SiO2 particle composite coating slides against a steel counterpart ball without a decorated diamond-like carbon film. The approach described in this study could be of significance in engineering.
APA, Harvard, Vancouver, ISO, and other styles
23

Gao, Kai, Bin Wang, Asghar Shirani, Qiuying Chang, and Diana Berman. "Macroscale Superlubricity Accomplished by Sb2O3-MSH/C Under High Temperature." Frontiers in Chemistry 9 (April 15, 2021). http://dx.doi.org/10.3389/fchem.2021.667878.

Full text
Abstract:
Here, we report the high-temperature superlubricity phenomenon accomplished in coatings produced by burnishing powders of antimony trioxide (Sb2O3) and magnesium silicate hydroxide coated with carbon (MSH/C) onto the nickel superalloy substrate. The tribological analysis performed in an open-air experimental setup revealed that with the increase of testing temperature, the coefficient of friction (COF) of the coating gradually decreases, finally reaching the superlubricity regime (the COF of 0.008) at 300°C. The analysis of worn surfaces using in-situ Raman spectroscopy suggested the synergistic effect of the inner Sb2O3 adhesion layer and the top MSH/C layer, which do not only isolate the substrate from the direct exposure to sliding but also protect it from oxidation. The cross-sectional transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated the tribochemically-activated formation of an amorphous carbon layer on the surface of the coating during sliding. Formation of the film enables the high-temperature macroscale superlubricity behavior of the material system.
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Panpan, Pengfei Ju, Li Ji, Hongxuan Li, Xiaohong Liu, Lei Chen, Huidi Zhou, and Jianmin Chen. "Toward Robust Macroscale Superlubricity on Engineering Steel Substrate." Advanced Materials, July 26, 2020, 2002039. http://dx.doi.org/10.1002/adma.202002039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ge, Xiangyu, Jinjin Li, and Jianbin Luo. "Macroscale Superlubricity Achieved With Various Liquid Molecules: A Review." Frontiers in Mechanical Engineering 5 (February 5, 2019). http://dx.doi.org/10.3389/fmech.2019.00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

"Macroscale Superlubricity Enabled By Ensembles of Graphene on Diamond Nanoscrolls." ECS Meeting Abstracts, 2016. http://dx.doi.org/10.1149/ma2016-02/8/1059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Berman, Diana, Badri Narayanan, Mathew J. Cherukara, Subramanian K. R. S. Sankaranarayanan, Ali Erdemir, Alexander Zinovev, and Anirudha V. Sumant. "Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity." Nature Communications 9, no. 1 (March 21, 2018). http://dx.doi.org/10.1038/s41467-018-03549-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Androulidakis, Charalampos, Emmanuel N. Koukaras, George Paterakis, George Trakakis, and Costas Galiotis. "Tunable macroscale structural superlubricity in two-layer graphene via strain engineering." Nature Communications 11, no. 1 (March 27, 2020). http://dx.doi.org/10.1038/s41467-020-15446-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography