Academic literature on the topic 'Macrophages M2-Like'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Macrophages M2-Like.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Macrophages M2-Like"

1

Wen, Zhifa, Hongxiang Liu, Meng Zhou, and Li-xin Wang. "Tumor released autophagosomes regulate M2-like macrophage polarization (TUM6P.974)." Journal of Immunology 194, no. 1_Supplement (2015): 141.22. http://dx.doi.org/10.4049/jimmunol.194.supp.141.22.

Full text
Abstract:
Abstract Tumor cells secrete mediators that modulate macrophage activation and polarization into M2 type tumor associated macrophages (TAMs), which contribute to tumor progression. However, the mechanisms that regulate the polarization are poorly defined. We have previously reported that the enrichment of autophagosomes in tumor cell conditioned medium and malignant ascites from patients. The present study investigated the hypothesis that tumor released autophagosomes promoted M2 polarization. Here we isolated autophagosomes released from murine liver cancer cells using affinity purification. In vivo mouse experiments demonstrated that intraperitoneal injected autophagosomes were efficiently internalized by peritoneal macrophages, which correlated with upregulation of M2 markers. In vitro, coculture of autophagosomes with bone marrow-derived macrophages (BMDMs) also induced macrophage polarization into a M2-like phenotype. Furthmore, this effect of autophagosomes was largely abolished in BMDMs from MyD88 KO mice. Taken together, our findings suggest that, under stress conditions, tumor released autophagosomes may promote tumor progression via regulation of TAMs in tumor microenvironment, providing new insight into TAMs polarization. Keywords: Tumor released autophagosomes, Macrophage, Polarization, MyD88.
APA, Harvard, Vancouver, ISO, and other styles
2

Draijer, Christina, Patricia Robbe, Carian E. Boorsma, Machteld N. Hylkema, and Barbro N. Melgert. "Characterization of Macrophage Phenotypes in Three Murine Models of House-Dust-Mite-Induced Asthma." Mediators of Inflammation 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/632049.

Full text
Abstract:
In asthma, an important role for innate immunity is increasingly being recognized. Key innate immune cells in the lungs are macrophages. Depending on the signals they receive, macrophages can at least have an M1, M2, or M2-like phenotype. It is unknown how these macrophage phenotypes behave with regard to (the severity of) asthma. We have quantified the phenotypes in three models of house dust mite (HDM-)induced asthma (14, 21, and 24 days). M1, M2, and M2-like phenotypes were identified by interferon regulatory factor 5 (IRF5), YM1, and IL-10, respectively. We found higher percentages of eosinophils in HDM-exposed mice compared to control but no differences between HDM models. T cell numbers were higher after HDM exposure and were the highest in the 24-day HDM protocol. Higher numbers of M2 macrophages after HDM correlated with higher eosinophil numbers. In mice with less severe asthma, M1 macrophage numbers were higher and correlated negatively with M2 macrophages numbers. Lower numbers of M2-like macrophages were found after HDM exposure and these correlated negatively with M2 macrophages. The balance between macrophage phenotypes changes as the severity of allergic airway inflammation increases. Influencing this imbalanced relationship could be a novel approach to treat asthma.
APA, Harvard, Vancouver, ISO, and other styles
3

Lalor, Richard, та Sandra O’Neill. "Bovine κ-Casein Fragment Induces Hypo-Responsive M2-Like Macrophage Phenotype". Nutrients 11, № 7 (2019): 1688. http://dx.doi.org/10.3390/nu11071688.

Full text
Abstract:
Immunomodulatory nutraceuticals have garnered special attention due to their therapeutic potential for the amelioration of many chronic inflammatory conditions. Macrophages are key players in the induction, propagation and resolution of inflammation, actively contributing to the pathogenesis and resolution of inflammatory disorders. As such, this study aimed to investigate the possible therapeutic effects bovine casein derived nutraceuticals exert on macrophage immunological function. Initial studies demonstrated that sodium caseinate induced a M2-like macrophage phenotype that was attributed to the kappa-casein subunit. Kappa-casein primed macrophages acquired a M2-like phenotype that expressed CD206, CD54, OX40L, CD40 on the cell surface and gene expression of Arg-1, RELM-α and YM1, archetypical M2 markers. Macrophages stimulated with kappa-casein secreted significantly reduced TNF-α and IL-10 in response to TLR stimulation through a mechanism that targeted the nuclear factor-κB signal transduction pathway. Macrophage proteolytic processing of kappa-casein was required to elicit these suppressive effects, indicating that a fragment other than C-terminal fragment, glycomacropeptide, induced these modulatory effects. Kappa-casein treated macrophages also impaired T-cell responses. Given the powerful immuno-modulatory effects exhibited by kappa-casein and our understanding of immunopathology associated with inflammatory diseases, this fragment has the potential as an oral nutraceutical and therefore warrants further investigation.
APA, Harvard, Vancouver, ISO, and other styles
4

Lyu, Qingkang, Edwin J. A. Veldhuizen, Irene S. Ludwig, et al. "Characterization of polarization states of canine monocyte derived macrophages." PLOS ONE 18, no. 11 (2023): e0292757. http://dx.doi.org/10.1371/journal.pone.0292757.

Full text
Abstract:
Macrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune‑related diseases. However, knowledge about canine macrophage polarization is still in its infancy. In this study, we polarized canine monocytes using GM-CSF/IFN- γ and LPS towards M1 macrophages or M-CSF and IL-4 towards M2 macrophages and compared them to undifferentiated monocytes (M0). Polarized M1 and M2 macrophages were thoroughly characterized for morphology, surface marker features, gene profiles and functional properties. Our results showed that canine M1-polarized macrophages obtained a characteristic large, roundish, or amoeboid shape, while M2-polarized macrophages were smaller and adopted an elongated spindle-like morphology. Phenotypically, all macrophage subsets expressed the pan-macrophage markers CD14 and CD11b. M1-polarized macrophages expressed increased levels of CD40, CD80 CD86 and MHC II, while a significant increase in the expression levels of CD206, CD209, and CD163 was observed in M2-polarized macrophages. RNAseq of the three macrophage subsets showed distinct gene expression profiles, which are closely associated with immune responsiveness, cell differentiation and phagocytosis. However, the complexity of the gene expression patterns makes it difficult to assign clear new polarization markers. Functionally, undifferentiated -monocytes, and M1- and M2- like subsets of canine macrophages can all phagocytose latex beads. M2-polarized macrophages exhibited the strongest phagocytic capacity compared to undifferentiated monocytes- and M1-polarized cells. Taken together, this study showed that canine M1 and M2-like macrophages have distinct features largely in parallel to those of well-studied species, such as human, mouse and pig. These findings enable future use of monocyte derived polarized macrophages particularly in studies of immune related diseases in dogs.
APA, Harvard, Vancouver, ISO, and other styles
5

Sánchez-Reyes, Karina, Alejandro Bravo-Cuellar, Georgina Hernández-Flores, et al. "Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/683068.

Full text
Abstract:
Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages.Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells.Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Wenya, Qianqian Chen, Yi Li, Jun Wan, Jia Li та Shuai Tang. "HIF-1α-Overexpressing Mesenchymal Stem Cells Attenuate Colitis by Regulating M1-like Macrophages Polarization toward M2-like Macrophages". Biomedicines 11, № 3 (2023): 825. http://dx.doi.org/10.3390/biomedicines11030825.

Full text
Abstract:
A modified mesenchymal stem cell (MSC) transplantation is a highly effective and precise treatment for inflammatory bowel disease (IBD), with a significant curative effect. Thus, we aim to examine the efficacy of hypoxia-inducible factor (HIF)–1α-overexpressing MSC (HIF-MSC) transplantation in experimental colitis and investigate the immunity regulation mechanisms of HIF-MSC through macrophages. A chronic experimental colitis mouse model was established using 2,4,6-trinitrobenzene sulfonic acid. HIF-MSC transplantation significantly attenuated colitis in weight loss rate, disease activity index (DAI), colon length, and pathology score and effectively rebuilt the local and systemic immune balance. Macrophage depletion significantly impaired the benefits of HIF-MSCs on mice with colitis. Immunofluorescence analysis revealed that HIF-MSCs significantly decreased the number of M1-like macrophages and increased the number of M2-like macrophages in colon tissues. In vitro, co-culturing with HIF-MSCs significantly decreased the expression of pro-inflammatory factors, C-C chemokine receptor 7 (CCR-7), and inducible nitric oxide synthase (INOS) and increased the expression of anti-inflammatory factors and arginase I (Arg-1) in induced M1-like macrophages. Flow cytometry revealed that co-culturing with HIF-MSCs led to a decrease in the proportions of M1-like macrophages and an increase in that of M2-like macrophages. HIF-MSCs treatment notably upregulated the expression of downstream molecular targets of phosphatidylinositol 3-kinase-γ (PI3K-γ), including HIF-1α and p-AKT/AKT in the colon tissue. A selected PI3K-γ inhibitor, IPI549, attenuated these effects, as well as the effect on M2-like macrophage polarization and inflammatory cytokines in colitis mice. In vitro, HIF-MSCs notably upregulated the expression of C/EBPβ and AKT1/AKT2, and PI3K-γ inhibition blocked this effect. Modified MSCs stably overexpressed HIF-1α, which effectively regulated macrophage polarization through PI3K-γ. HIF-MSC transplantation may be a potentially effective precision therapy for IBD.
APA, Harvard, Vancouver, ISO, and other styles
7

Strizova, Zuzana, Iva Benesova, Robin Bartolini, et al. "M1/M2 macrophages and their overlaps – myth or reality?" Clinical Science 137, no. 15 (2023): 1067–93. http://dx.doi.org/10.1042/cs20220531.

Full text
Abstract:
Abstract Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient’s prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Dezhi, Min Yan, Fengfei Sun, et al. "miR-498 inhibits autophagy and M2-like polarization of tumor-associated macrophages in esophageal cancer via MDM2/ATF3." Epigenomics 13, no. 13 (2021): 1013–30. http://dx.doi.org/10.2217/epi-2020-0341.

Full text
Abstract:
Structured abstract Aim: To elucidate the effect of miRNA (miR)-498 on autophagy and M2-like macrophage polarization in esophageal cancer. Methods: Autophagy was evaluated in esophageal cancer. Macrophage markers specific for M1- or M2-like phenotype were determined. The binding relationships between miR-498 and MDM2, MDM2 and ATF3 were analyzed. Results: miR-498 was downregulated in esophageal cancer and was associated with disease-free and overall patient survival. Enhanced miR-498 reduced LC3I conversion to LC3II and increased p62 accumulation in KYSE-150 cells, and increased macrophage polarization to M2-like phenotype in KYSE-150 and TAM co-culture. miR-498 inhibited MDM2-mediated ATF3 degradation, thus suppressing autophagy and M2-like polarization of macrophages in esophageal cancer. Conclusion: miR-498 may inhibit autophagy and M2-like polarization of macrophages to suppress esophageal cancer via MDM2/ATF3.
APA, Harvard, Vancouver, ISO, and other styles
9

Ronaghan, Natalie J., Mandy Soo, Uriel Pena, et al. "M1-like, but not M0- or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion." PLOS ONE 17, no. 10 (2022): e0276013. http://dx.doi.org/10.1371/journal.pone.0276013.

Full text
Abstract:
Respiratory syncytial virus (RSV) is a common childhood infection that in young infants can progress into severe bronchiolitis and pneumonia. Disease pathogenesis results from both viral mediated and host immune processes of which alveolar macrophages play an important part. Here, we investigated the role of different types of alveolar macrophages on RSV infection using an in vitro co-culture model involving primary tissue-derived human bronchial epithelial cells (HBECs) and human blood monocyte-derived M0-like, M1-like, or M2-like macrophages. It was hypothesized that the in vitro model would recapitulate previous in vivo findings of a protective effect of macrophages against RSV infection. It was found that macrophages maintained their phenotype for the 72-hour co-culture time period and the bronchial epithelial cells were unaffected by the macrophage media. HBEC infection with RSV was decreased by M1-like macrophages but enhanced by M0- or M2-like macrophages. The medium used during the co-culture also impacted the outcome of the infection. This work demonstrates that alveolar macrophage phenotypes may have differential roles during epithelial RSV infection, and demonstrates that an in vitro co-culture model could be used to further investigate the roles of macrophages during bronchial viral infection.
APA, Harvard, Vancouver, ISO, and other styles
10

Di Martile, Marta, Valentina Farini, Francesca Maria Consonni, et al. "Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages." Journal for ImmunoTherapy of Cancer 8, no. 1 (2020): e000489. http://dx.doi.org/10.1136/jitc-2019-000489.

Full text
Abstract:
BackgroundA bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression.MethodsTHP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice.ResultsHigher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+and CD8+IFNγ+effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment.ConclusionsTaken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography