Academic literature on the topic 'Macrophages'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Macrophages.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Macrophages"
Rodriguez, Eric, Frederic Boudard, Michele Mallié, Jean-Marie Bastide, and Madeleine Bastide. "Murine macrophage elastolytic activity induced by Aspergillus fumigatus strains in vitro: evidence of the expression of two macrophage-induced protease genes." Canadian Journal of Microbiology 43, no. 7 (July 1, 1997): 649–57. http://dx.doi.org/10.1139/m97-092.
Full textLu, Yufei, Leiming Guo, and Gaofeng Ding. "PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma." Future Oncology 15, no. 35 (December 2019): 4019–30. http://dx.doi.org/10.2217/fon-2019-0519.
Full textHargarten, Jessica C., Tyler C. Moore, Thomas M. Petro, Kenneth W. Nickerson, and Audrey L. Atkin. "Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration." Infection and Immunity 83, no. 10 (July 20, 2015): 3857–64. http://dx.doi.org/10.1128/iai.00886-15.
Full textYadav, Mahesh, and Jeffrey S. Schorey. "The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria." Blood 108, no. 9 (November 1, 2006): 3168–75. http://dx.doi.org/10.1182/blood-2006-05-024406.
Full textGallego, Carolina, Douglas Golenbock, Maria Adelaida Gomez, and Nancy Gore Saravia. "Toll-Like Receptors Participate in Macrophage Activation and Intracellular Control of Leishmania (Viannia) panamensis." Infection and Immunity 79, no. 7 (April 25, 2011): 2871–79. http://dx.doi.org/10.1128/iai.01388-10.
Full textMcKenzie, C. G. J., U. Koser, L. E. Lewis, J. M. Bain, H. M. Mora-Montes, R. N. Barker, N. A. R. Gow, and L. P. Erwig. "Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages." Infection and Immunity 78, no. 4 (February 1, 2010): 1650–58. http://dx.doi.org/10.1128/iai.00001-10.
Full textWilson, Justin E., Bhuvana Katkere, and James R. Drake. "Francisella tularensis Induces Ubiquitin-Dependent Major Histocompatibility Complex Class II Degradation in Activated Macrophages." Infection and Immunity 77, no. 11 (August 24, 2009): 4953–65. http://dx.doi.org/10.1128/iai.00844-09.
Full textCareau, Éric, Léa-Isabelle Proulx, Philippe Pouliot, Annie Spahr, Véronique Turmel, and Élyse Y. Bissonnette. "Antigen sensitization modulates alveolar macrophage functions in an asthma model." American Journal of Physiology-Lung Cellular and Molecular Physiology 290, no. 5 (May 2006): L871—L879. http://dx.doi.org/10.1152/ajplung.00219.2005.
Full textShinonaga, Masamichi, Cha Cheng Chang, Noriyuki Suzuki, Masazumi Sato, and Takeo Kuwabara. "Immunohistological evaluation of macrophage infiltrates in brain tumors." Journal of Neurosurgery 68, no. 2 (February 1988): 259–65. http://dx.doi.org/10.3171/jns.1988.68.2.0259.
Full textFedorov, A. A., N. A. Ermak, T. S. Gerashchenko, E. B. Topolnitskii, N. A. Shefer, E. O. Rodionov, and M. N. Stakheyeva. "Polarization of macrophages: mechanisms, markers and factors of induction." Siberian journal of oncology 21, no. 4 (September 3, 2022): 124–36. http://dx.doi.org/10.21294/1814-4861-2022-21-4-124-136.
Full textDissertations / Theses on the topic "Macrophages"
Svensson, Ulf. "Macrophage activation by bacteria signalling to prostaglandin and cytokine responses /." Lund : Dept. of Medical & Physiological Chemistry, Lund University, 1994. http://books.google.com/books?id=sAhrAAAAMAAJ.
Full textHiguera, González Laura 1993. "Novel transcription regulators of tissue macrophages and alternative macrophage polarization." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/672702.
Full textLos macrófagos juegan un papel muy importante en la defensa del organismo frente a una amplia variedad de patógenos. Los macrófagos se adaptan rápidamente a las perturbaciones en el microambiente gracias a que existe una compleja red de factores de transcripción que modulan sus respuestas. En los últimos años se han identificado factores de transcripción que regulan la identidad de los macrófagos, sin embargo, apenas se está comenzando a conocer la importancia de otros factores de transcripción que permiten adaptar la respuesta de los macrófagos, tanto en condiciones homeostáticas como frente a infecciones. Anteriormente nuestro grupo identificó reguladores transcripcionales de las respuestas pro-inflamatorias de los macrófagos, y en este trabajo hemos explorado la función de nuevos mecanismos reguladores que participan en la regulación de la distribución de los macrófagos en homeostasis, así como en las respuestas anti-inflamatorias de los macrófagos. Hemos estudiado poblaciones de macrófagos con diferentes ontogenias que habitan dentro de los tejidos y hemos caracterizado su regulación transcripcional. Además, hemos comparado la respuesta anti-inflamatoria de los diferentes macrófagos tisulares y así hemos identificado que existe un mecanismo transcripcional específico que controla la expresión de genes anti-inflamatorios según el origen del macrófago.
Tabata, Yasuhiko. "Macrophage phagocytosis of polymer microspheres and antitumor activation of macrophages." Kyoto University, 1987. http://hdl.handle.net/2433/74704.
Full textRaborn, Erinn Shenee. "Cannabinoid Modulation of Chemotaxis of Macrophages and Macrophage-like Cells." VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1333.
Full textGrand-Perret, Thierry A. R. "Induction d'une activité anti-tumorale chez les macrophages péritonéaux murins." Paris 11, 1986. http://www.theses.fr/1986PA112301.
Full textBouchareychas, Laura. "Implication des phagocytes mononuclées dans l'évolution de la plaque d'athérosclérose et relation avec l'homéostasie du cholestérol et des lipoprotéines." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066282/document.
Full textAtherosclerosis represents a chronic pathophysiological process implicated in the majority of cardiovascular diseases. The development of atherosclerotic lesions is characterized by an accumulation of extra and intracellular lipids in the arterial wall at the origin of a strong inflammatory response involving macrophages.Macrophages are considered key actors in the development of atherosclerotic plaques. Indeed, because of their ability to metabolize cholesterol (capture, storage, efflux), to regulate inflammation and to phagocyte apoptotic cells, they exert pro and/or anti-atherogenic functions that may be modulated therapeutically. In this context, we evaluated the therapeutic potential of macrophages protected against apoptosis, on the progression of established atherosclerotic lesions.We have demonstrated that increased macrophage survival can slow down the progression of established lesions, stabilize lesion and reduce cholesterol levels. These athero-protective effects are attributed to the increase in Kupffer cells and Ly-6Clow monocytes partly due to their ability to produce apolipoprotein E. We also show that Kupffer cells are involved in the clearance of pro-atherogenic lipoproteins. The increase in ApoE pool and in Kupffer cells reduces cholesterol levels and thus lesion progression
Di, Maggio Paula. "Dietary lipids and inflammation : chylomicron remnants suppress pro-inflammatory pathways and activate antioxidant defence mechanisms in human macrophages." Thesis, Royal Veterinary College (University of London), 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618287.
Full textGeorges, George Tharwat. "Novel Characteristics of Murine Bone Marrow-Derived Macrophages and Human Macrophage-Like Cells." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/932.
Full textAwomoyi, Agnes Abiola Oluwatoyin. "Genetics of susceptibility to tuberculosis." Thesis, Open University, 2000. http://oro.open.ac.uk/58012/.
Full textSuñer, Navarro Clara. "CPEB4 function in macrophages." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663483.
Full textComo células del sistema inmune innato, los macrófagos detectan señales de peligro endógenas y exógenas y responden desencadenando procesos inflamatorios. Estas respuestas inflamatorias tienen que ser inducidas rápidamente pero a su vez, deben ser eficientemente resueltas. Para ello, los macrófagos inducen la expresión de mediadores pro- y anti- inflamatorios que controlan la expresión unos de otros mediante complejos circuitos regulatorios. Estos procesos requieren un estricto control de la expresión génica a distintos niveles. En los últimos años, se ha descrito que la regulación de los mRNAs por deadenilación es un elemento crucial para regular intensidad y sobretodo la duración de las respuestas inflamatorias. La família de proteínas de unión al RNA CPEBs (Cytoplasmic Polyadenylation Element Binding, CPEB1-4), unen mRNAs que contienen CPEs (Cytoplasmic Polyadenylation Elements) en su 3’UTR. Las CPEBs pueden reclutar dos tipos de complejos en los mRNAs que unen. Estos complejos modulan la longitud de la cola poly(A) y, por tanto, pueden reprimir o estimular su traducción. Los mRNAs de múltiples mediadores inflamatorios y son susceptibles de ser regulados por las CPEBs ya que contienen CPEs en sus 3’UTRs. Por tanto, las CPEBs podrían ser un nuevo mecanismo regulador del desarrollo de las respuestas inflamatorias. En este trabajo hemos descubierto que CPEB4 participa en la respuesta de los macrófagos frente a LPS. El tratamiento con LPS provoca un incremento en los niveles de CPEB4 y promueve que su función sea de polyadenylación. Este proceso es mediado por las MAPK p38α y ERK1/2 y dos proteínas que regulan mRNAs mediante la unión a AREs. El patrón de expresión de CPEB4 sugiere que esta proteína participa en la fase tardía de la respuesta a LPS, cuándo la respuesta inflamatoria es resuelta. Apoyando esta hipótesis, ratones KO para CPEB4 en las células mieloides son más sensibles al shock séptico inducido por LPS. Identificando los mRNAs que CPEB4 regula en este contexto, hemos descrito que CPEB4 regula la expresión de inhibidores de la señalización de la vía MAPK. De este modo, CPEB4 es necesaria para la resolución de la inflamación en respuesta a LPS. Además, hemos descrito como la regulación de mRNAs por CPEB4, HuR y TTP define diferentes patrones temporales de expresión durante el desarrollo de respuestas inflamatorias.
Books on the topic "Macrophages"
Kloc, Malgorzata, ed. Macrophages. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54090-0.
Full textRousselet, Germain, ed. Macrophages. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3.
Full textLawrence, Toby, and Thorsten Hagemann, eds. Tumour-Associated Macrophages. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0662-4.
Full textH, Heppner Gloria, and Fulton Amy M. 1950-, eds. Macrophages and cancer. Boca Raton, Fla: CRC Press, 1988.
Find full textThorsten, Hagemann, and SpringerLink (Online service), eds. Tumour-Associated Macrophages. New York, NY: Springer Science+Business Media, LLC, 2012.
Find full textDavid, Evered, Nugent Jonathan, O'Connor Maeve, Ciba Foundation, and Symposium on Biochemistry of Microphages (1985 : Ciba Foundation), eds. Biochemistry of macrophages. Chichester: John Wiley, 1986.
Find full textMass, Elvira, ed. Tissue-Resident Macrophages. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3437-0.
Full textDavid, Evered, Nugent Jonathan, O'Connor Maeve, and Symposium on Biochemistry of Macrophages (1985 : Ciba Foundation), eds. Biochemistry of macrophages. London: Pitman, 1986.
Find full textReiner, Neil E., ed. Macrophages and Dendritic Cells. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-396-7.
Full textHorton, Michael A., ed. Macrophages and Related Cells. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9534-9.
Full textBook chapters on the topic "Macrophages"
Kelly, Aoife, Aleksander M. Grabiec, and Mark A. Travis. "Culture of Human Monocyte-Derived Macrophages." In Macrophages, 1–11. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_1.
Full textIan Cumming, R., and Yen-Rei A. Yu. "Phenotyping Tumor-Associated Macrophages." In Macrophages, 99–109. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_10.
Full textDalby, Elizabeth. "Activating Murine Macrophages In Vitro." In Macrophages, 111–17. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_11.
Full textHuang, Xuan, Yong Li, Mingui Fu, and Hong-Bo Xin. "Polarizing Macrophages In Vitro." In Macrophages, 119–26. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_12.
Full textRoback, Linda, and Lisa P. Daley-Bauer. "Viral Replication Assay in Bone Marrow-Derived Macrophages." In Macrophages, 127–34. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_13.
Full textAribi, Mourad. "Macrophage Bactericidal Assays." In Macrophages, 135–49. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_14.
Full textMontaño, Fernando, Sergio Grinstein, and Roni Levin. "Quantitative Phagocytosis Assays in Primary and Cultured Macrophages." In Macrophages, 151–63. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_15.
Full textMularski, Anna, Florence Marie-Anaïs, Julie Mazzolini, and Florence Niedergang. "Observing Frustrated Phagocytosis and Phagosome Formation and Closure Using Total Internal Reflection Fluorescence Microscopy (TIRFM)." In Macrophages, 165–75. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_16.
Full textRousselet, Germain. "Chromatin Immunoprecipitation in Macrophages." In Macrophages, 177–86. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_17.
Full textKeller, Andrea-Anneliese, Marten B. Maeß, Michael Schnoor, Berith Scheiding, and Stefan Lorkowski. "Transfecting Macrophages." In Macrophages, 187–95. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_18.
Full textConference papers on the topic "Macrophages"
Mahgoub, Yasmine, Rida Arif, and Susu Zughaier. "Pyocyanin pigment from Pseudomonas aeruginosa modulates innate immune defenses in macrophages." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0137.
Full textvan Dam-Mieras, M. C. E., A. D. Muller, and G. Hornstra. "DIETARY LIPIDS, INFECTION AND MACROPHAGE PROCOAGULANT ACTIVITY." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643398.
Full textMcGee, Maria, and Henry Rothberger. "MECHANISMS OF PROCOAGULANT GENERATION BY ALVEOLAR MACROPHAGES DURING MATURATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643168.
Full textReinhard, Björn M., Hongyun Wang, and Linxi Wu. "Monitoring Cellular Trafficking of Nanoparticle Cargo in Murine Macrophages Through Plasmon Coupling Microscopy." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93078.
Full textRocha, Aline Carvalho, and Victor Piana Andrade. "The role of tumor-associated macrophages in the prediction of sentinel lymph node involvement in breast cancer." In Brazilian Breast Cancer Symposium 2024, 31. Mastology, 2024. http://dx.doi.org/10.29289/259453942024v34s1031.
Full textAdany, R., A. Kiss, J. Kappelmayer, R. J. Ablin, and L. Muszbek. "EXPRESSION OF FACTOR XIII SUBUNIT A IN DIFFERENT TYPES OF HUMAN MACROPHAGES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644651.
Full textHobro, Alison J., Takeshi Sugiyama, Nicolas Pavillon, Takayuki Umakoshi, Prabhat Verma, and Nicholas Smith. "Label-free Raman imaging of saturated and unsaturated fatty acid uptake, storage, and return toward baseline levels in macrophages." In JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.19a_a602_1.
Full textMuszbek, L., and R. Adány. "CELLULAR DISTIBUTION OF FACTOR XIII IN HUMAN UTERUS AND PLACENTA." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644648.
Full textBelchamber, K., and E. Sapey. "S51 Hungry hungry macrophages: how multiple prey affects macrophage phagocytosis." In British Thoracic Society Winter Meeting, Wednesday 17 to Friday 19 February 2021, Programme and Abstracts. BMJ Publishing Group Ltd and British Thoracic Society, 2021. http://dx.doi.org/10.1136/thorax-2020-btsabstracts.56.
Full textGijsen, Frank, Anna Ten Have, Jolanda Wentzel, and Antonius Van Der Steen. "Temperature Measurement of Advanced Murine Atherosclerotic Plaques." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176307.
Full textReports on the topic "Macrophages"
Havell, Edward A. Actions of Interferons on Macrophages. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada157006.
Full textNaftolin, Frederick. Macrophages, Estrogen and the Microenvironment in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada383077.
Full textBenson, J. M., K. J. Nikula, and R. A. Guilmette. Evidence for particle transport between alveolar macrophages in vivo. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/381362.
Full textShpigel, Nahum, Raul Barletta, Ilan Rosenshine, and Marcelo Chaffer. Identification and characterization of Mycobacterium paratuberculosis virulence genes expressed in vivo by negative selection. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7696510.bard.
Full textYull, Fiona. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada541379.
Full textNelson, Corwin, Donald C. Beitz, Tim Reinhardt, and John Lippolis. Toll-Like Receptor Signaling in Bovine Macrophages Increases 1,25-Dihydroxyvitamin D3 Production. Ames (Iowa): Iowa State University, January 2008. http://dx.doi.org/10.31274/ans_air-180814-482.
Full textYull, Fiona. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada554014.
Full textAdiga, Umesh, Brian Bell, Larissa Ponomareva, Sandra Nelson, Stephen Kanzleman, Debbie Taylor, Ryan Kramer, and Thomas Lamkin. Automated Analysis and Classification of Infected Macrophages Using Bright-Field Amplitude Contrast Data. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada578711.
Full textKim, Isaac. Neuroendocrine Differentiation in Prostate Cancer: Role of Bone Morphogenetic Protein-6 and Macrophages. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada555480.
Full textSplitter, Gary, and Menachem Banai. Microarray Analysis of Brucella melitensis Pathogenesis. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709884.bard.
Full text