Journal articles on the topic 'Macromolecular crowding agents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 journal articles for your research on the topic 'Macromolecular crowding agents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
De Pieri, Andrea, Shubhasmin Rana, Stefanie Korntner, and Dimitrios I. Zeugolis. "Seaweed polysaccharides as macromolecular crowding agents." International Journal of Biological Macromolecules 164 (December 2020): 434–46. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.087.
Full textLee, Hong Bok, Anh Cong, Hannah Leopold, Megan Currie, Arnold J. Boersma, Erin D. Sheets, and Ahmed A. Heikal. "Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments." Physical Chemistry Chemical Physics 20, no. 37 (2018): 24045–57. http://dx.doi.org/10.1039/c8cp03873b.
Full textStepanenko, Olesya V., Olga V. Stepanenko, Irina M. Kuznetsova, and Konstantin K. Turoverov. "The unfolding of iRFP713 in a crowded milieu." PeerJ 7 (April 8, 2019): e6707. http://dx.doi.org/10.7717/peerj.6707.
Full textdel Álamo, Marta, Germán Rivas, and Mauricio G. Mateu. "Effect of Macromolecular Crowding Agents on Human Immunodeficiency Virus Type 1 Capsid Protein Assembly In Vitro." Journal of Virology 79, no. 22 (November 15, 2005): 14271–81. http://dx.doi.org/10.1128/jvi.79.22.14271-14281.2005.
Full textGnutt, David, and Simon Ebbinghaus. "The macromolecular crowding effect – from in vitro into the cell." Biological Chemistry 397, no. 1 (January 1, 2016): 37–44. http://dx.doi.org/10.1515/hsz-2015-0161.
Full textVweza, Alick-O., Chul-Gyu Song, and Kil-To Chong. "Liquid–Liquid Phase Separation in the Presence of Macromolecular Crowding and State-Dependent Kinetics." International Journal of Molecular Sciences 22, no. 13 (June 22, 2021): 6675. http://dx.doi.org/10.3390/ijms22136675.
Full textZhou, Huan-Xiang. "Effect of mixed macromolecular crowding agents on protein folding." Proteins: Structure, Function, and Bioinformatics 72, no. 4 (May 27, 2008): 1109–13. http://dx.doi.org/10.1002/prot.22111.
Full textBiswas, Saikat, and Pramit K. Chowdhury. "Unusual domain movement in a multidomain protein in the presence of macromolecular crowders." Physical Chemistry Chemical Physics 17, no. 30 (2015): 19820–33. http://dx.doi.org/10.1039/c5cp02674a.
Full textZhang, Chen, Fang Li, Si-Xi Wang, Zhao-Sheng Liu, and Haji Akber Aisa. "Molecularly imprinted polymers prepared using a porogenic solvent of an ionic liquid and a macromolecular crowding agent and their application in purification of oleanic acid." Analytical Methods 7, no. 24 (2015): 10256–65. http://dx.doi.org/10.1039/c5ay01960e.
Full textKoch, Leon, Roland Pollak, Simon Ebbinghaus, and Klaus Huber. "A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo." Biosensors 13, no. 7 (July 8, 2023): 720. http://dx.doi.org/10.3390/bios13070720.
Full textChristopoulou, Natalia-Maria, Despina P. Kalogianni, and Theodore K. Christopoulos. "Macromolecular crowding agents enhance the sensitivity of lateral flow immunoassays." Biosensors and Bioelectronics 218 (December 2022): 114737. http://dx.doi.org/10.1016/j.bios.2022.114737.
Full textRosin, Christopher, Paul Hendrik Schummel, and Roland Winter. "Cosolvent and crowding effects on the polymerization kinetics of actin." Physical Chemistry Chemical Physics 17, no. 13 (2015): 8330–37. http://dx.doi.org/10.1039/c4cp04431b.
Full textLin, Szu-Ning, Gijs J. L. Wuite, and Remus T. Dame. "Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU." International Journal of Molecular Sciences 21, no. 24 (December 15, 2020): 9553. http://dx.doi.org/10.3390/ijms21249553.
Full textSu, Wan-Chih, Douglas L. Gettel, Morgan Chabanon, Padmini Rangamani, and Atul N. Parikh. "Pulsatile Gating of Giant Vesicles Containing Macromolecular Crowding Agents Induced by Colligative Nonideality." Journal of the American Chemical Society 140, no. 2 (January 5, 2018): 691–99. http://dx.doi.org/10.1021/jacs.7b10192.
Full textChristiansen, Alexander, Qian Wang, Margaret S. Cheung, and Pernilla Wittung-Stafshede. "Effects of macromolecular crowding agents on protein folding in vitro and in silico." Biophysical Reviews 5, no. 2 (February 19, 2013): 137–45. http://dx.doi.org/10.1007/s12551-013-0108-0.
Full textRowe, Ian, Andriy Anishkin, Kishore Kamaraju, Kenjiro Yoshimura, and Sergei Sukharev. "The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding." Journal of General Physiology 143, no. 5 (April 28, 2014): 543–57. http://dx.doi.org/10.1085/jgp.201311114.
Full textMukherjee, Sanjib K., Saurabh Gautam, Saikat Biswas, Jayanta Kundu, and Pramit K. Chowdhury. "Do Macromolecular Crowding Agents Exert Only an Excluded Volume Effect? A Protein Solvation Study." Journal of Physical Chemistry B 119, no. 44 (October 23, 2015): 14145–56. http://dx.doi.org/10.1021/acs.jpcb.5b09446.
Full textDey, Pinki, and Arnab Bhattacherjee. "Disparity in anomalous diffusion of proteins searching for their target DNA sites in a crowded medium is controlled by the size, shape and mobility of macromolecular crowders." Soft Matter 15, no. 9 (2019): 1960–69. http://dx.doi.org/10.1039/c8sm01933a.
Full textFerreira, L. A., V. N. Uversky, and B. Y. Zaslavsky. "Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes." Molecular BioSystems 13, no. 12 (2017): 2551–63. http://dx.doi.org/10.1039/c7mb00436b.
Full textShahid, Sumra, Faizan Ahmad, Md Imtaiyaz Hassan, and Asimul Islam. "Mixture of Macromolecular Crowding Agents Has a Non-additive Effect on the Stability of Proteins." Applied Biochemistry and Biotechnology 188, no. 4 (February 9, 2019): 927–41. http://dx.doi.org/10.1007/s12010-019-02972-9.
Full textPaudel, Bishnu P., Erica Fiorini, Richard Börner, Roland K. O. Sigel, and David S. Rueda. "Optimal molecular crowding accelerates group II intron folding and maximizes catalysis." Proceedings of the National Academy of Sciences 115, no. 47 (November 5, 2018): 11917–22. http://dx.doi.org/10.1073/pnas.1806685115.
Full textRusinga, Farai I., and David D. Weis. "Automated Strong Cation-Exchange Cleanup To Remove Macromolecular Crowding Agents for Protein Hydrogen Exchange Mass Spectrometry." Analytical Chemistry 89, no. 2 (December 23, 2016): 1275–82. http://dx.doi.org/10.1021/acs.analchem.6b04057.
Full textLi, Quan-Fu, Yan-Mei Zhan, Yong-Gang Zhong, Bo Zhang, and Chang-Qing Ge. "Macromolecular Crowding Agents-Assisted Imprinted Polymers For Analysis Of Glycocholic Acid In Human Plasma And Urine." Biomedical Chromatography 30, no. 11 (May 20, 2016): 1706–13. http://dx.doi.org/10.1002/bmc.3737.
Full textShahid, Sumra, Ikramul Hasan, Faizan Ahmad, Md Imtaiyaz Hassan, and Asimul Islam. "Carbohydrate-Based Macromolecular Crowding-Induced Stabilization of Proteins: Towards Understanding the Significance of the Size of the Crowder." Biomolecules 9, no. 9 (September 12, 2019): 477. http://dx.doi.org/10.3390/biom9090477.
Full textAumiller, William M., Bradley W. Davis, Emmanuel Hatzakis, and Christine D. Keating. "Interactions of Macromolecular Crowding Agents and Cosolutes with Small-Molecule Substrates: Effect on Horseradish Peroxidase Activity with Two Different Substrates." Journal of Physical Chemistry B 118, no. 36 (August 26, 2014): 10624–32. http://dx.doi.org/10.1021/jp506594f.
Full textAmzallag, Emmanuel, and Eran Hornstein. "Crosstalk between Biomolecular Condensates and Proteostasis." Cells 11, no. 15 (August 4, 2022): 2415. http://dx.doi.org/10.3390/cells11152415.
Full textCaterino, Tamara L., and Jeffrey J. Hayes. "Structure of the H1 C-terminal domain and function in chromatin condensationThis paper is one of a selection of papers published in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process." Biochemistry and Cell Biology 89, no. 1 (February 2011): 35–44. http://dx.doi.org/10.1139/o10-024.
Full textChang, Jui-Yoa, Bao-Yun Lu, and Por-Hsiung Lai. "Oxidative folding of hirudin in human serum." Biochemical Journal 394, no. 1 (January 27, 2006): 249–57. http://dx.doi.org/10.1042/bj20051660.
Full textShahid, Sumra, Faizan Ahmad, Md Imtaiyaz Hassan, and Asimul Islam. "Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: An insight into stability-activity trade-off." Archives of Biochemistry and Biophysics 584 (October 2015): 42–50. http://dx.doi.org/10.1016/j.abb.2015.08.015.
Full textVogel, Kristina, Thorsten Greinert, Monique Reichard, Christoph Held, Hauke Harms, and Thomas Maskow. "Thermodynamics and Kinetics of Glycolytic Reactions. Part II: Influence of Cytosolic Conditions on Thermodynamic State Variables and Kinetic Parameters." International Journal of Molecular Sciences 21, no. 21 (October 25, 2020): 7921. http://dx.doi.org/10.3390/ijms21217921.
Full textWerner, Tony E. R., Istvan Horvath, and Pernilla Wittung-Stafshede. "Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein." QRB Discovery 2 (2021). http://dx.doi.org/10.1017/qrd.2020.17.
Full textOkamoto, Debora N., Lilian C. G. Oliveira, Marcia Y. Kondo, Maria H. S. Cezari, Zoltán Szeltner, Tünde Juhász, Maria A. Juliano, László Polgár, Luiz Juliano, and Iuri E. Gouvea. "Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition." Biological Chemistry 391, no. 12 (December 1, 2010). http://dx.doi.org/10.1515/bc.2010.145.
Full textLecinski, Sarah, Jack W. Shepherd, Kate Bunting, Lara Dresser, Steven D. Quinn, Chris MacDonald, and Mark C. Leake. "Correlating viscosity and molecular crowding with fluorescent nanobeads and molecular probes: in vitro and in vivo." Interface Focus 12, no. 6 (October 14, 2022). http://dx.doi.org/10.1098/rsfs.2022.0042.
Full textLouisthelmy, Rebecca, Brycen M. Burke, and R. Chase Cornelison. "Brain cancer cell-derived matrices and effects on astrocyte migration." Cells Tissues Organs, February 15, 2022. http://dx.doi.org/10.1159/000522609.
Full textHagedoorn, Peter-Leon. "Isothermal Titration Calorimetry in Biocatalysis." Frontiers in Catalysis 2 (May 10, 2022). http://dx.doi.org/10.3389/fctls.2022.906668.
Full textSiraj, Seerat, Daraksha Yameen, Anas Shamsi, Faizya Khan, Asimul Islam, and Mohammad Mahfuzul Haque. "Interaction of Thioflavin T (ThT) and 8-anilino-1-naphthalene sulfonic acid (ANS) with macromolecular crowding agents and their monomers: Biophysical analysis using in vitro and computational approaches." Journal of Molecular Liquids, January 2023, 121270. http://dx.doi.org/10.1016/j.molliq.2023.121270.
Full textBonucci, Alessio, Martina Palomino-Schätzlein, Paula Malo de Molina, Arantxa Arbe, Roberta Pierattelli, Bruno Rizzuti, Juan L. Iovanna, and José L. Neira. "Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1." Frontiers in Molecular Biosciences 8 (July 5, 2021). http://dx.doi.org/10.3389/fmolb.2021.684622.
Full textKöhn, Birgit, and Michael Kovermann. "All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy." Nature Communications 11, no. 1 (November 13, 2020). http://dx.doi.org/10.1038/s41467-020-19616-w.
Full text