Academic literature on the topic 'Macromolecular and materials chemistry, n.e.c'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Macromolecular and materials chemistry, n.e.c.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Macromolecular and materials chemistry, n.e.c"

1

HUSSAIN, MUHAMMAD AJAZ, IRAM MALIK, IQRA SHAD, FASIHA AMJAD, MUHAMMAD AMIN, MUHAMMAD NAWAZ TAHIR, NISAR ULLAH, MUHAMMAD ASHRAF, and MUHAMMAD IMRAN IRFAN. "DESIGN, CHARACTERIZATION AND ENHANCED BIOAVAILABILITY OF HYDROXYPROPYLCELLULOSE-BASED NOVEL BIOCONJUGATES FOR INCLUSION OF A FLUOROQUINOLONE ANTIBIOTIC – GEMIFLOXACIN." Cellulose Chemistry and Technology 55, no. 9-10 (December 3, 2021): 1019–27. http://dx.doi.org/10.35812/cellulosechemtechnol.2021.55.87.

Full text
Abstract:
Polysaccharides are beneficially used as drug carriers via prodrug formation and offer a mechanism for better effectiveness and delivery of the drug. The unique geometry of hydroxypropylcellulose (HPC), a polysaccharide, allows the attachment of drug molecules with a higher degree of substitution. Therefore, HPC-gemifloxacin conjugates, i.e., macromolecular prodrugs, were synthesized using acylation reagents, i.e., tosyl chloride and carbonyldiimidazole using N,N-dimethylacetamide as a solvent. The reactions were carried out at 80 °C under stirring for 24 h in inert environment. This strategy of reaction appeared efficient to obtain a high degree of drug substitution (DS = 0.42-1.34) on the polymer parent chain, as calculated by UV-visible spectrophotometry after hydrolysis of the samples. The method provides high efficacy as product yields were high (71-76%). Macromolecular prodrugs with different DS of gemifloxacin (GEM) designed were found soluble in organic solvents. The pharmacokinetic studies showed that the t1/2 and tmax values of GEM from HPC-GEM conjugate were considerably higher, which indicates improved bioavailability of the drug after conjugate formation.
APA, Harvard, Vancouver, ISO, and other styles
2

Bergin, Edwin A., Geoffrey A. Blake, Fred Ciesla, Marc M. Hirschmann, and Jie Li. "Tracing the ingredients for a habitable earth from interstellar space through planet formation." Proceedings of the National Academy of Sciences 112, no. 29 (July 6, 2015): 8965–70. http://dx.doi.org/10.1073/pnas.1500954112.

Full text
Abstract:
We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1–12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Ruirui, Lijie Lin, Birong Zeng, Xindan Yi, Chenyu Huang, Kunpeng Du, Xiaohui Liu, Yiting Xu, Conghui Yuan, and Lizong Dai. "Diblock Copolymers Containing Titanium-Hybridized Polyhedral Oligomeric Silsesquioxane Used as a Macromolecular Flame Retardant for Epoxy Resin." Polymers 14, no. 9 (April 22, 2022): 1708. http://dx.doi.org/10.3390/polym14091708.

Full text
Abstract:
In this paper, the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing diblock copolymer poly[(p-hydroxybenzaldehyde methacrylate)m-b-(2-((6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)oxy)ethyl methacrylate)n] (abbrev. poly(HAMAm-b-HEPOMAn)) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. When it was continued to react with titanium-hybridized aminopropyl-polyhedral oligomeric silsesquioxane (Ti-POSS) through a Schiff-base reaction, new grafted copolymers poly[(Ti-POSS-HAMA)m-b-HEPOMAn] (abbrev. PolyTi) were obtained. Then, they were used as macromolecular flame retardant to modify epoxy resin materials. The thermal, flame retardant and mechanical properties of the prepared EP/PolyTi composites were tested by TGA, DSC, LOI, UL-94, SEM, Raman, DMA, etc. The migration of phosphorus moiety from epoxy resin composites was analyzed by immersing the composites into ethanol/H2O solution and recording the extraction solution by UV-Vis spectroscopy. The results showed that the added PolyTi enhanced the glass transition temperature, the carbon residue, the graphitization of char, LOI, and mechanical properties of the EP/PolyTi composites when compared to pure cured EP. Furthermore, the phosphorus moieties were more likely to migrate from EP/DOPO composites than that from EP/PolyTi composites. Obviously, compared with small molecular flame retardant modified EP, the macromolecular flame retardant modified EP/PolyTi composites exhibited better thermal stability, flame retardancy, and resistance to migration.
APA, Harvard, Vancouver, ISO, and other styles
4

Diaz, Carlos, Maria Luisa Valenzuela, and Miguel Á. Laguna-Bercero. "Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation." International Journal of Molecular Sciences 23, no. 3 (January 20, 2022): 1093. http://dx.doi.org/10.3390/ijms23031093.

Full text
Abstract:
Nanomaterials have attracted much attention over the last decades due to their very different properties compared to those of bulk equivalents, such as a large surface-to-volume ratio, the size-dependent optical, physical, and magnetic properties. A number of solution fabrication methods have been developed for the synthesis of metal and metal oxides nanoparticles, but few solid-state methods have been reported. The application of nanostructured materials to electronic solid-state devices or to high-temperature technology requires, however, adequate solid-state methods for obtaining nanostructured materials. In this review, we discuss some of the main current methods of obtaining nanomaterials in solid state, and also we summarize the obtaining of nanomaterials using a new general method in solid state. This new solid-state method to prepare metals and metallic oxides nanostructures start with the preparation of the macromolecular complexes chitosan·Xn and PS-co-4-PVP·MXn as precursors (X = anion accompanying the cationic metal, n = is the subscript, which indicates the number of anions in the formula of the metal salt and PS-co-4-PVP = poly(styrene-co-4-vinylpyridine)). Then, the solid-state pyrolysis under air and at 800 °C affords nanoparticles of M°, MxOy depending on the nature of the metal. Metallic nanoparticles are obtained for noble metals such as Au, while the respective metal oxide is obtained for transition, representative, and lanthanide metals. Size and morphology depend on the nature of the polymer as well as on the spacing of the metals within the polymeric chain. Noticeably in the case of TiO2, anatase or rutile phases can be tuned by the nature of the Ti salts coordinated in the macromolecular polymer. A mechanism for the formation of nanoparticles is outlined on the basis of TG/DSC data. Some applications such as photocatalytic degradation of methylene by different metal oxides obtained by the presented solid-state method are also described. A brief review of the main solid-state methods to prepare nanoparticles is also outlined in the introduction. Some challenges to further development of these materials and methods are finally discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Veciana, Jaume, and Hiizu Iwamura. "Organic Magnets." MRS Bulletin 25, no. 11 (November 2000): 41–51. http://dx.doi.org/10.1557/mrs2000.223.

Full text
Abstract:
The notion of organic molecular materials showing metallic properties, such as electric conductivity or ferromagnetism, started several decades ago as a mere dream of some members of the chemical community. The goal was to create an assembly of organic molecules or macromolecules containing only light elements (C, H, N, O, S, etc.) and yet possessing the electron/hole mobility or spin alignment that is inherent in typical metals or their oxides and different from the isolated molecular materials. Organic molecular conductors initially were developed during the 1960s, but the first examples of organic molecular magnets took several more decades to be discovered, owing to the more subtle and complex structural and electronic aspects of these materials. The flurry of activity in this field can be traced to the widely held belief that even the most sophisticated properties can be rationally designed by a systematic modification of organic molecular structures. This motivation was further fueled by increased synthetic capabilities, especially for obtaining large organic molecules with suitable structures and topologies, and also by the spectacular progress of supramolecular chemistry for materials development witnessed in recent years. Also noteworthy is the pioneering work performed in the 1960s by several physical organic chemists who unraveled different ways of aligning spins within open-shell molecules (i.e., triplet diradicals, carbenes, etc.), working against nature's tendency to align them in an antiparallel manner. Magnetic interactions between unpaired electrons, located on the singly occupied molecular orbitals (SOMOs) of di- and polyradicals, or between the adjacent open-shell molecules in crystals, are a crucial issue in this evolving field. Thus, depending upon the symmetry, degeneracy,and topological characteristics of SOMOs and also on the mode of arrangement of the molecules in a crystal, the resulting interaction can align the neighboring spins parallel or antiparallel (see the introductory article by Miller and Epstein in this issue of MRS Bulletin).
APA, Harvard, Vancouver, ISO, and other styles
6

Oprea, Stefan, Violeta Otilia Potolinca, Veronica Oprea, and Livia Ingrid Diaconu. "Structure–properties relationship of the polyurethanes that contain Schiff base in the main chain." High Performance Polymers 32, no. 7 (February 5, 2020): 784–92. http://dx.doi.org/10.1177/0954008319901152.

Full text
Abstract:
This article studies the diversification of useful properties of polyurethane (PU) structures by the inclusion of new components. PUs containing a Schiff base in the main chain were synthesized by using N, N′-bis(salicylidene)-1,3-propanediamine as a chain extender. Novel Schiff base PUs were synthesized via a two-step polymerization starting from a Schiff base derivative diol chain extender with different molar ratios or by cross-linking with various natural raw materials. The sought after structures was confirmed by Fourier transform infrared spectra that showed the disappearance of the signals of both the hydroxyl and isocyanate groups. The thermal properties of these PUs were investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The initial degradation temperatures of the obtained PUs were found to be in the range of 300–350°C. Based on the results from DMA, the rigid structure of the Schiff base from the backbone of the PUs presented a higher storage modulus, results which may be connected to the physical cross-linking process of the macromolecules. Their optical properties were determined by fluorescence spectroscopy. The incorporation of Schiff base structures into the main PU chain generates new PU structures with improved thermomechanical properties, which includes possible bioactive Schiff base moieties, widening the range of practical applications for such polymers.
APA, Harvard, Vancouver, ISO, and other styles
7

Dolgih, Igor I., Dmitry A. Zhukalin, and Larisa A. Bityutskaya. "КОЛЛЕКТИВНАЯ ДИНАМИКА И РАЗМЕРНЫЕ ЭФФЕКТЫ ФАЗООБРАЗОВАНИЯ В СИСТЕМЕ АЭРОСИЛ – ПОЛИСТИРОЛЬНЫЙ ЛАТЕКС." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 3 (September 26, 2019): 366–73. http://dx.doi.org/10.17308/kcmf.2019.21/1150.

Full text
Abstract:
В стандартных условиях проведен модельный эксперимент по влиянию сил обеднения на процесс высыхания капли взвесей невзаимодействующих частиц аэросил – полистирольный латекс. Впервые обнаружен быстропротекающий процесс фазового превращения аэросила в кристаллический SiO2 в течение десятков секунд, сопровождающийся резким изменением цвета раствора от светло-голубого до синего. Обнаружена дифракционная картина, свидетельствующая о нанокристаллической природе зародышеобразования новой фазы. Фазообразование интерпретировано как результат действия неравновесной силы обеднения в условиях гидродинамической неустойчивости высыхающей капли. REFERENCES Tret’yakov Yu. D. Self-organisation processes in the chemistry of materials. Uspekhi khimii [Russian Chemical Reviews], 2003, v. 72(8), pp. 651–679. https://doi.org/10.1070/RC2003v072n08ABEH000836 Kushnir S. E., Kazin P. E., Trusov L. A., Tret’yakov Yu. D. Self-organization of micro- and nanoparticles in ferrofl uids. Uspekhi khimii [Russian Chemical Reviews], 2012, v. 81(6), pр. 560–570. https://doi.org/10.1070/RC2012v081n06ABEH004250 Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfi mov M. V. Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2013, v. 8(3-4), pр. 137–162. https://doi.org/10.1134/S1995078013020110 Walker D. A., Kowalczyk B., Cruz M. O., Grzybowski B. A. Electrostatics at the nanoscale. Nanoscale, 2011, v. 3(4), pp. 1316–1344. https://doi.org/10.1039/C0NR00698J Ouyang Q., Castets V., Boissonade J., et al. Sustained patterns in chlorite–iodide reactions in a onedimensional reactor. J. Chem. Phys., 1991, v. 95(1), pp. 351–360. https://doi.org/10.1063/1.461490 Tarasevich Yu. Yu., Pravoslavnova D. M. Kachestvennyy analiz zakonomernostey vysykhaniya kapli mnogokomponentnogo rastvora na tverdoy podlozhke [Qualitative analysis of patterns of drying of a drop of a multicomponent solution on a solid substrate], Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, vol. 77, no. 2. pp. 17–21. URL: http://journals.ioffe. ru/articles/viewPDF/9047 (in Russ.) Faigl’ F., Anger V. Kapel’nyi analiz neorganicheskikh veshchestv [Drip Analysis of Inorganic Substances]. Moscow, Mir Publ., 1976, v. 1, 390 p., v. 2, 320 p. (in Russ.) Yakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. Kapli biologicheskikh zhidkostey, vysykhayushchie na tverdoy podlozhke: dinamika morfologii, massy, temperatury i mekhanicheskikh svoystv [Drops of biological fluids drying on a solid substrate: dynamics of morphology, mass, temperature, and mechanical properties]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2010, v. 80(7), pp. 17–23. URL: http://journals.ioffe.ru/articles/viewPDF/10043 (in Russ.) Alfi mov M. V., Kadushnikov R. M., Shturkin N. A., Alievskii V. M., Lebedev-Stepanov P. V. Immitatsionnoe modelirovanie protsessov samoorganizatsii nanochastits [Simulation modeling of self-organization processes of nanoparticles], Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2006, v. 1(1–2), pp. 127–133. (in Russ.) Lebedev-Stepanov P. V., Gromov S. P., Molchanov S. P., Chernyshov N. A., Batalov I. S., Sazonov S. K., Lobova N. A., Shevchenko N. N., Men’shikova A. Yu., Alfimov M. V. Controlling the self-assemblage of modifi ed colloid particle ensembles in solution microdropletsRossiiskie nanotekhnologii [Nanotechnologies in Russia], 2011, v. 6(9–10), 569–578, pp. 72–78. https://doi.org/10.1134/S1995078011050119 Andreeva L. V., Novoselova A. S., Lebedev-Stepanov P. V., Ivanov D. A., Koshkin A. V., Petrov A. N., Alfi mov M. V. Zakonomernosti kristallizatsii rastvorennykh veshchestv iz mikrokapli [Patterns of crystallization of dissolved substances from microdrops]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, v. 77(2), pp. 22–30. URL: http://journals.ioffe.ru/articles/view-PDF/9048 (in Russ.) Barash L. Yu. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer, 2016, v. 102, pp. 445–454. https://doi.org/10.1016/j.ijh eatmasstransfer.2016.06.042 al Bityutskaya L. A., Zhukalin D. A., Tuchin A. V., Frolov A. A., Buslov V. A. Thermal dissipative structures in the case of carbon nanotubes aggregation in drying drops. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2014, v. 16(4), pp. 425–430. URL: https://journals.vsu.ru/kcmf/ article/view/856/937 (in Russ.) Asakura S., Oosawa F. Interaction between particles suspended in solutions of macromolecules. Polymer Science Part A: General Papers, 1958, v. 33(126), pp. 183–192. https://doi.org/10.1002/pol.1958.1203312618 Minton A. P. How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 2015, v. 119(14), pp. 2863–2869. https://doi.org/10.1242/jcs.03063 Chebotareva N. A., Kurganov B. I., Livanova N. B. Biochemical effects of molecular crowding. Biohimija [Biochemistry], 2004, v. 69(11), pp. 1239–1251. https://doi.org/10.1007/s10541-005-0070-y Bishop K. J., Wilmer C. E., Soh S., Grzybowski B. A. Nanoscale forces and their uses in self-assembly. Small, 2009, v. 5(14), p. 1600–1630. https://doi.org/10.1002/smll.200900358 Minton A. P. The infl uence of macromolecular crowding and macromolecular confi nement on biochemical reactions in physiological media. Journal of Biological Chemistry, v. 276(14), pp. 10577–10580. https://doi.org/10.1074/jbc.r100005200 Huber F., Strehle D., Schnauss J., Kas J. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces. New J. Physics, 2015, v. 17(4), p. 043029. https://doi.org/10.1088/1367-2630/17/4/043029 Jiang H., Wada H., Yoshinaga N., Sano M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Physical Review Letters, 2009, v. 102(20), p. 208301. https://doi.org/10.1103/physrevlett.102.208301 Deng H., Li G., Liu H. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Optics Express, 2012, v. 20(9), p. 9616. https://doi.org/10.1364/oe.20.009616 Wulfert R., Seiferta U., Speck T. Nonequilibrium depletion interactions in active microrheology. Soft Matter, 2017, v. 13(48), p. 9093–9102. https://doi.org/10.1039/c7sm01737e Dolgih I. I., Bitutskaya L. A. Entropy driven aggregation of CNT in a drying drop on hydrophilic and hydrophobic substrate. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2018, v. 20(4), p. 664–668. https://doi.org/10.17308/kcmf.2018.20/635
APA, Harvard, Vancouver, ISO, and other styles
8

Al Jabri, Hareb, Aumaya Taleb, Raphaelle Touchard, Imen Saadaoui, Vincent Goetz, and Jeremy Pruvost. "Cultivating Microalgae in Desert Conditions: Evaluation of the Effect of Light-Temperature Summer Conditions on the Growth and Metabolism of Nannochloropsis QU130." Applied Sciences 11, no. 9 (April 22, 2021): 3799. http://dx.doi.org/10.3390/app11093799.

Full text
Abstract:
Temperature and light are two of the most crucial factors for microalgae production. Variations in these factors alter their growth kinetics, macromolecular composition and physiological properties, including cell membrane permeability and fluidity. The variations define the adaptation mechanisms adopted by the microalgae to withstand changes in these environmental factors. In the Qatar desert the temperature varies widely, typically between 10° and 45 °C There are also wide variations in light intensity, with values of over 1500 μmolhν.m−2s−1 in summer. A study of the effects of these thermal and light fluctuations is therefore essential for large-scale outdoor production systems, especially during the summer when temperature and light fluctuations are at their highest. The aim of this work is to study the impact of temperature and light intensity variations as encountered in summer period on the Nannochloropsis QU130 strain, which was selected for its suitability for outdoor cultivation in the harsh conditions of the Qatar desert. It was carried out using lab-scale photobioreactors enabling simulation of both constant and dynamic temperature and light regimes. Biomass productivity, cell morphology and biochemical compositions were examined first in constant conditions, then in typical outdoor cultivation conditions to elucidate the adjustments in cell function in respect of fluctuations. The dynamic light and temperature were shown to have interactive effects. The application of temperature cycles under constant light led to a 13.6% increase in biomass productivity, while a 45% decrease was observed under light and temperature regimes due to the combined stress. In all cases, the results proved that N. sp. QU130 has a high level of adaptation to the wide fluctuations in light and temperature stress. This was shown through its ability to easily change its physiology (cell size) and metabolic process in response to different cultivation conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Bezgin, F., and K. Demirelli. "Synthesis and characterisation of a photoresponsive four-armed graft copolymer prepared from coumarin and methyl methacrylate." Pigment & Resin Technology 43, no. 6 (November 3, 2014): 347–56. http://dx.doi.org/10.1108/prt-04-2013-0031.

Full text
Abstract:
Purpose This paper aims to a newly designed photoresponsive four-armed graft copolymer was synthesised and characterised. The synthesised polymer contains photochemical group and a greater part of the cross-linkable functional group which is not affected by short wavelength when subject to under ultraviolet (UV) irradiation in film status. Design/methodology/approach The four-armed macroinitiator was prepared by reacting diethanol amine with poly [methyl-2-chloro-4-{7-(chloroacetyl) oxy]-2-oxo-2H-chromen-4-yl}-2-methylbutanoate] and acylating the product with chloroacetyl chloride. A grafting reaction with n-butyl methacrylate was carried out in the presence of the four-armed macroinitiator and the catalyst CuBr/2, 2′-bipyridyne at 90°C. All of the synthesised polymers were structurally characterised by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen-1 Nuclear Magnetic Resonance (1H-NMR) spectra. Gel permeation chromatography was used to obtain the molecular weights of polymer. Findings 1H-NMR, FT-IR and ultraviolet-visible (UV-Vis) spectroscopy demonstrated that the four-armed macroinitiator and the graft copolymer was successfully synthesised. The end-functionalised poly(methyl methacrylate) with 7-hydroxyl-4-chloromethyl coumarin was irradiated at the wavelength larger than 300 nm to create the cyclobutane ring in between the 7-hydroxyl-4-chloro methyl coumarin unities. To characterise the polymer and show the transformation of coumarin unities into photodimers, 1H-NMR, FT-IR and UV-Vis spectroscopy were used. Research limitations/implications Graft copolymer containing coumarin has involves photocrosslinkable functional group, in which reactive functional group has attracted great interest from both industrial and academic fields. Their synthesis provides the opportunity for a compatible modification of the graft copolymer structure to develop adapted macromolecules for a range of end practices. Practical implications A photoresponsive graft copolymer can have a role in an active area of polymer chemistry research due to its uses in the areas of photolithography, liquid crystal, non-linear optical materials, laser dyes, fluorescence materials and future microelectronics. Originality/value Graft copolymers containing a photocrosslinkable functional group, and a star polymer may be prepared using the method described in this paper and then used in technological applications. The method discussed here also allows photoinduced reversible self-healing in solid polymers.
APA, Harvard, Vancouver, ISO, and other styles
10

Akbar, Said Ali. "Sensor Gas Amonia Berbasis Polimer Konduktif Polianilina: Sebuah Review." QUIMICA: Jurnal Kimia Sains dan Terapan 3, no. 2 (February 2, 2022): 1–8. http://dx.doi.org/10.33059/jq.v3i2.4678.

Full text
Abstract:
Artikel review ini memberikan informasi tentang aplikasi polianilina (PANI) dan kompositnya sebagai sensor gas berbahaya khususnya amonia (NH3). Kajian yang dibahas pada artikel ini meliputi sifat gas NH3, material komposit, kinerja sensor, serta limit deteksi. Tinjauan sensor gas amonia berbasis polimer konduktif polianilina secara menyeluruh diambil dari referensi sepuluh tahun terakhir. Sebagai contoh, komposit polianilina dengan turunan karbon seperti reduced Graphene Oxide (rGO) dan Carbon Nanotube menunjukkan limit deteksi hingga 46 ppb dengan waktu pemulihan hanya 75 detik. Selain itu, komposit PANI dengan logam seperti Ag, Sr dan sebagainya, menunjukkan limit deteksi yang lebih besar yaitu 1 ppm, namun terdapat keunggulan dimana waktu pemulihan hanya 4 deti. Oleh sebab itu, polimer konduktif polianilina menjadi material yang sangat menjanjikan untuk mendeteksi keberadaan gas NH3. Terakhir, mekanisme penginderaan gas amonia terhadap material PANI juga dibahas pada tulisan ini. Referensi: [1] M. Insausti, R. Timmis, R. Kinnersley, and M. C. Rufino, “Advances in sensing ammonia from agricultural sources,” Science of the Total Environment, vol. 706. 2020. doi: 10.1016/j.scitotenv.2019.135124. [2] H. Shen et al., “Intense Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and Ecosystem Health,” One Earth, vol. 3, no. 1, 2020, doi: 10.1016/j.oneear.2020.06.015. [3] W. Wu, B. Wei, G. Li, L. Chen, J. Wang, and J. Ma, “Study on ammonia gas high temperature corrosion coupled erosion wear characteristics of circulating fluidized bed boiler,” Engineering Failure Analysis, vol. 132, p. 105896, 2022, doi: https://doi.org/10.1016/j.engfailanal.2021.105896. [4] X. Huang et al., “Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing,” Journal of Materials Chemistry, vol. 22, no. 42, pp. 22488–22495, 2012, doi: 10.1039/C2JM34340A. [5] T. Jiang, P. Wan, Z. Ren, and S. Yan, “Anisotropic Polyaniline/SWCNT Composite Films Prepared by in Situ Electropolymerization on Highly Oriented Polyethylene for High-Efficiency Ammonia Sensor,” ACS Applied Materials & Interfaces, vol. 11, no. 41, pp. 38169–38176, Oct. 2019, doi: 10.1021/acsami.9b13336. [6] H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, no. 3. 2007. doi: 10.3390/s7030267. [7] D. Kwak, Y. Lei, and R. Maric, “Ammonia gas sensors: A comprehensive review,” Talanta, vol. 204. 2019. doi: 10.1016/j.talanta.2019.06.034. [8] M. Eising, C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Roman, “Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor,” Sensors and Actuators, B: Chemical, vol. 245, pp. 25–33, 2017, doi: 10.1016/j.snb.2017.01.132. [9] M. P. Diana, W. S. Roekmijati, and W. U. Suyud, “Why it is often underestimated: Historical Study of Ammonia Gas Exposure Impacts towards Human Health,” in E3S Web of Conferences, 2018, vol. 73. doi: 10.1051/e3sconf/20187306003. [10] R. T. Xu et al., “Half-Century Ammonia Emissions From Agricultural Systems in Southern Asia: Magnitude, Spatiotemporal Patterns, and Implications for Human Health,” GeoHealth, vol. 2, no. 1, 2018, doi: 10.1002/2017GH000098. [11] S. A. Akbar, A. Mardhiah, N. Saidi, and D. Lelifajri, “The effect of graphite composition on polyaniline film performance for formalin gas sensor,” Bulletin of the Chemical Society of Ethiopia, vol. 34, no. 3, 2021, doi: 10.4314/bcse.v34i3.14. [12] X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, and L. Guo, “Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites,” Sensors and Actuators B: Chemical, vol. 322, p. 128615, 2020, doi: https://doi.org/10.1016/j.snb.2020.128615. [13] L. Wang et al., “Enhanced Sensitivity and Stability of Room-Temperature NH3 Sensors Using Core–Shell CeO2 Nanoparticles@Cross-linked PANI with p–n Heterojunctions,” ACS Applied Materials &Interfaces, vol. 6, no. 16, pp. 14131–14140, Aug. 2014, doi: 10.1021/am503286h. [14] Y. Guo et al., “Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors,” Nanoscale, vol. 8, no. 23, pp. 12073–12080, 2016, doi: 10.1039/C6NR02540D. [15] M. Eising, C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Roman, “Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor,” Sensors and Actuators B: Chemical, vol. 245, pp. 25–33, 2017, doi: https://doi.org/10.1016/j.snb.2017.01.132. [16] S. Bai et al., “Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors,” Small, vol. 11, no. 3, 2015, doi: 10.1002/smll.201401865. [17] Z. Wu et al., “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sensors and Actuators, B: Chemical, vol. 178, 2013, doi: 10.1016/j.snb.2013.01.014. [18] N. R. Tanguy, B. Wiltshire, M. Arjmand, M. H. Zarifi, and N. Yan, “Highly Sensitive and Contactless Ammonia Detection Based on Nanocomposites of Phosphate-Functionalized Reduced Graphene Oxide/Polyaniline Immobilized on Microstrip Resonators,” ACS Applied Materials and Interfaces, vol. 12, no. 8, 2020, doi: 10.1021/acsami.9b21063. [19] D. Maity and R. T. R. Kumar, “Polyaniline Anchored MWCNTs on Fabric for High Performance Wearable Ammonia Sensor,” ACS Sensors, vol. 3, no. 9, 2018, doi: 10.1021/acssensors.8b00589. [20] J. Ma et al., “Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses,” Sensors and Actuators, B: Chemical, vol. 334, May 2021, doi: 10.1016/j.snb.2021.129677. [21] A. Javadian-Saraf, E. Hosseini, B. D. Wiltshire, M. H. Zarifi, and M. Arjmand, “Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing,” Journal of Hazardous Materials, vol. 418, Sep. 2021, doi: 10.1016/j.jhazmat.2021.126283. [22] A. Liu et al., “The gas sensor utilizing polyaniline/ MoS2 nanosheets/ SnO2 nanotubes for the room temperature detection of ammonia,” Sensors and Actuators, B: Chemical, vol. 332, Apr. 2021, doi: 10.1016/j.snb.2021.129444. [23] Q. Feng, H. Zhang, Y. Shi, X. Yu, and G. Lan, “Preparation and gas sensing properties of PANI/SnO2 hybrid material,” Polymers, vol. 13, no. 9, May 2021, doi: 10.3390/polym13091360. [24] S. Benhouhou, A. Mekki, M. Ayat, and N. Gabouze, “Facile Preparation of PANI-Sr Composite Flexible Thin Film for Ammonia Sensing at Very Low Concentration,” Macromolecular Research, vol. 29, no. 4, pp. 267–279, Apr. 2021, doi: 10.1007/s13233-021-9034-3. [25] X. Wang et al., “In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator,” Nano Energy, vol. 88, Oct. 2021, doi: 10.1016/j.nanoen.2021.106242. [26] J. Chang et al., “Polyaniline-Reduced Graphene Oxide Nanosheets for Room Temperature NH3Detection,” ACS Applied Nano Materials, vol. 4, no. 5, pp. 5263–5272, May 2021, doi: 10.1021/acsanm.1c00633. [27] S. Matindoust, A. Farzi, M. Baghaei Nejad, M. H. Shahrokh Abadi, Z. Zou, and L. R. Zheng, “Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 11, 2017, doi: 10.1007/s10854-017-6471-z. [28] J. Cai, C. Zhang, A. Khan, C. Liang, and W. di Li, “Highly transparent and flexible polyaniline mesh sensor for chemiresistive sensing of ammonia gas,” RSC Advances, vol. 8, no. 10, pp. 5312–5320, 2018, doi: 10.1039/c7ra13516e. [29] T. Syrový et al., “Gravure-printed ammonia sensor based on organic polyaniline colloids,” Sensors and Actuators, B: Chemical, vol. 225, pp. 510–516, Mar. 2016, doi: 10.1016/j.snb.2015.11.062.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Macromolecular and materials chemistry, n.e.c"

1

He, Jiliang. "Silyhydrazines : chemistry and pyrolytic conversion to Si-N-C ceramic materials." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29044.

Full text
Abstract:
A new synthetic route to silylhydrazine molecules and polymers has been developed by the heterodehydrocoupling of organosilanes with hydrazines. A dimethyltitanocene catalyst has been employed to facilitate the dehydrocoupling reaction. The dehydrocoupling was shown to proceed by stepwise replacement of Si-H with hydrazino groups. The controlled hydrolysis of Ph$ sb2$Si(NHNHMe)$ sb2$ formed a hydrazinodisiloxane. Cyclizations of Ph$ sb2$Si(NHNHMe)$ sb2$ to form cyclic silylhydrazines were achieved by the reaction with n-BuLi/Ph$ sb2$SiCl$ sb2,$ or MeI (or HCl or Ph$ sb2$SiCl$ sb2),$ or thermolysis. Crystal structures of Ph$ sb2$Si(NHNR)(NRNH)SiPh$ sb2$ (R = H, Me) reveal chair (R = H) and twist-boat (R = Me) conformations of the Si$ sb2$N$ sb4$ ring, respectively. Planar and pyramidal nitrogen geometries were found to coexist in a hydrazino unit. A preceramic polymer, synthesized by the polymerization of MeHSiCl$ sb2$ with hydrazine in an appropriate ratio, was pyrolyzed to Si$ sb3$N$ sb4$/SiC$ rm sb{x}$N$ rm sb{y}$ in 67-80% ceramic yields. It is proposed that the structural unit of this polymer is a tetraazadisilacyclohexane bridged by MeHSi groups. This assignment is based on $ sp{1}$H and $ sp{29}$Si NMR measurements, as well as by comparison with the well-defined reaction product of Me$ sb2$Si(NHNH) $ sb2$SiMe$ sb2$ with MeHSiCl$ sb2.$ The pyrolysis was carried out from room temperature to 1500$ sp circ$C under argon and studied by using thermogravimetric analysis, solid-state $ sp{29}$Si NMR spectroscopy, infrared spectroscopy, x-ray powder diffraction, and elemental analysis. Serial structural changes were characterized in the pyrolyzed solid products. The ceramic product of this polymer at 1100$ sp circ$C was found to possess a quasi-metallic electrical conductivity ($ sigma$ = 10$ sp3$ ($ Omega$cm)$ sp{{-}1}),$ and was evaluated as an electrode material.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Macromolecular and materials chemistry, n.e.c"

1

Rao, C. N. R. Readings in solid-state and materials chemistry: Selected research papers of C. N. R. Rao on the occasion of his 80th birthday. Hackensack,] New Jersey: World Scientific, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Macromolecular and materials chemistry, n.e.c"

1

"INTERCALATION CHEMISTRY OF B/C/N MATERIALS A. Intercalation Compounds of B/C/N Hybrid." In Fluorine-Carbon and Fluoride-Carbon Materials, 226–27. CRC Press, 1994. http://dx.doi.org/10.1201/9781482293562-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Syntheses, Structures, and Intercalation Chemistry of B/C/N." In Fluorine-Carbon and Fluoride-Carbon Materials, 197–200. CRC Press, 1994. http://dx.doi.org/10.1201/9781482293562-34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kawaguchi, M., K. Yamada, and H. Ishikawa. "Intercalation Chemistry and Application of B/C/N Materials to Secondary Batteries." In New Fluorinated Carbons: Fundamentals and Applications, 261–81. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803479-8.00011-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schweitzer, George K., and Lester L. Pesterfield. "E–pH Diagrams." In The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0003.

Full text
Abstract:
This volume is intended to employ E–pH diagrams to describe the inorganic solution chemistry of the chemical elements. Such diagrams are very useful in numerous fields of investigation, including electrochemistry, analytical chemistry, inorganic chemistry, geochemistry, environmental chemistry, corrosion chemistry, hydrometallurgy, water chemistry, agricultural chemistry, toxicology, biochemistry, chemical engineering, materials science, health physics, and nutrition. It is assumed that the reader is acquainted with the following major topics which are treated in elementary chemistry: stoichiometry, equilibrium, acid–base phenomena, solubility, complexation, elementary thermodynamics, and electrochemistry. In 1923, W. M. Clark and B. Cohen published a paper in which they introduced the idea of plotting the electromotive force as referred to the hydrogen electrode E against the pH for several chemical systems. In 1928, Clark continued to develop this graphical presentation in his text on the determination of pH. The utility of the method was further extended by numerous other investigators such as M. Pourbaix, G. Valensi, G. Charlot, T. P. Hoar, R. M. Garrels, N. de Zoubov, J. Van Muylder, E. Deltombe, C. Vanleugenhaghe, J. Schmets, M. Maraghini, P. Van Rysselberghe, A. Moussard, J. Brenet, F. Jolas, K. Schwabe, J. Besson, W. Kunz, A. L. Pitman, J. N. Butler, P. Delahay, H. Freiser, H. A. Laitinen, L. G. Sillen, P. L. Cloke, and others. In 1963, M. Pourbaix in collaboration with N. de Zoubov published Atlas d’equilibres electrochimiques, a collection of E–pH diagrams for 90 chemical elements. This volume was translated into English in 1966 by J. A. Franklin and published as Atlas of Electrochemical Equilibria in Aqueous Solutions. Subsequently other investigators published computer programs for constructing the diagrams: L. Santoma; B. G. Williams, and W. H. Patrick; P. B. Linkson, B. D. Phillips, and C. D. Rowles; K. Osseo-Asare, A. W. Asihene, T. Xue, and V. S. T. Ciminellie; D. R. Drewes; M. Mao and E. Peters; H-H. Huang and C. A. Young; J. P. Birk and Laura L. Tayer; G. P. Glasby and H. D. Schulz; and Q. Feng, Y. Ma, and Y. Lu.
APA, Harvard, Vancouver, ISO, and other styles
5

Pérez Méndez, Mercedes, José Fayos Alcañiz, and Marc Meunier. "Molecular Simulation of Cholesteric Liquid-Crystal Polyesteramides: Conformational and Structure Analysis by Rietveld Refinement." In Liquid Crystals [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100388.

Full text
Abstract:
Molecular modeling techniques are applied to polyesteramides designed as PNOBDME (C34H38N2O6)n and PNOBEE (C26H22N2O6)n, synthesized and characterized as cholesteric liquid crystals -through the condensation reaction between 4 and 4′-(terephthaloyl- diaminedibenzoic chloride (NOBC) and racemic glycol: DL-1,2 dodecanediol, or DL-1,2-butanediol, respectively, being chemical modifications of precursor multifunctional cholesteric LC polyesters, adding new properties but holding their helical macromolecular structures. Although the starting raw materials were racemic, these cholesteric LC polymers exhibit unexpected optical activity and chiral morphology. For that reason, conformational analysis is studied on the monomer models of PNOBDME and PNOBEE. Four helical conformers models, experimentally observed by NMR, are proposed for each cholesteric polyesteramide: Rgg, Rgt, Sgg, Sgt. Polymerization of the monomeric conformers, with minima energies, have been simulated and used to reproduce the crystalline fraction observed by x-ray diffraction. Three orders of chirality are observed in the structure of the polymer chains: One due to the asymmetric carbon atoms, a second chirality due to the two successive rotations of the benzene groups, along the main chain, within the monomer which implies the formation of helical molecules, for both R and S chirality and still, a third chirality corresponding to the twisting of the rigid/semirigid cholesteric LC polymer chains. All these factors contributing to the net optical activity observed in these materials. Crystal packing is simulated in triclinic primitive P1cells, with molecular chains oriented parallel to the z-axis (c lattice parameter equal to the pitch length of each simulated polymer helix) and parameters a, b, α, β and γ, obtained by Pawley refinement from the known structures of precursor polyesters. The simulated x-ray diffraction patterns of the proposed crystal models fit, after successive Pawley and Rietveld refinement cycles, the experimental WAXS. Powder Quantitative Phase Analysis applied to an ideal mixture with the four possible helical conformers, for each degree of polymerization, allows to refine their relative weight and determine the major phase relative amount. These results would confirm the theory of a preferable recrystallization, among the four possible helical diastereoisomers, depending on the synthetic conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

Hoffmann, Roald. "The Material and Spiritual Rationales Are Inseparable." In Roald Hoffmann on the Philosophy, Art, and Science of Chemistry. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199755905.003.0036.

Full text
Abstract:
There are sound spiritual reasons for the ecological and environmentalist perspective—for minimizing pollution and harm to ourselves, to future generations, to the earth. Are these consistent with the material reality and aspirations of chemistry and chemical industry? One would like to think they are. But what of the realities? I want to take a hard, personal look at this fundamental tension. And also search for what is special about Green or Sustainable Chemistry, facing up to the obstacles confronting the field. And, while reaching for a measure of transformation, a multifaceted Green Index, to come back to a moral perspective on our creative activities. Chemists and chemical engineers are prone to believe that the general public does not recognize the contributions that chemistry has made to our health and our standard of living. And we often cringe at the perception that others blame us (and the great industries that employ us) for fouling our own nest, the infinity of ways we have found of affecting adversely our bodies and the earth by producing on the megaton scale the unnatural. Each of these adverse opinions can be productively discussed—both with the people whose adversarial or anguished arguments chemists react to, and with the chemists’ exaggerated and defensive response to them. The facts remain that the industries that transform matter (to which chemistry is central) have flourished to an extent that is staggering. They’ve played an essential material role in prolonging life, and while not making people any happier, they have provided spiritual value. The value I’m thinking of is not in creating the materials for CDs and books, ancillary tools to spiritual satisfaction, but in providing partial, yet unprecedented knowledge of the world. And the transformative industries are also responsible for an immense quantity of hazardous waste. The scale of their fecund creative enterprise is such that the major cycles of the world are perturbed. More than half the N and S atoms in our bodies have seen the inside of a chemical factory. And C, O, and H atoms too, through agriculture, food preparation, and sewage treatment.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Macromolecular and materials chemistry, n.e.c"

1

Nafisyah, Wini, Sutarno Sutarno, Bakti Berlyanto Sedayu, Silvia Wahyuni, and Indriana Kartini. "Synthesis of Carboxymethyl Cellulose/Bentonite/N-P-K Composite as Slow-Release Fertilizer Model Using Twin-Screw Extruder." In Life Science, Materials and Applied Chemistry. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-qxgbxq.

Full text
Abstract:
CMC/Bentonite/N-P-K composites have been prepared as the macronutrient slow-release fertilizer. The composites were made by mixing natural bentonite, carboxymethyl cellulose (CMC), and N-P-K using a twin-screw extruder at 100 °C and screw rate of 600 rpm. The weight ratio of CMC to N-P-K was set at 1:0.5. The mass of bentonite was varied at 0.1; 0.5; and 1 (wt.%). The composites were characterized using infrared (IR) spectroscopy and X-ray diffraction (XRD). Mechanical properties of the composites were evaluated through tensile and compressive strength, water absorption capacity and stability test in water. It is found that increasing the natural bentonite ratio in the composite decreased the tensile and compressive strength but increased water absorption capacity and stability. The release of N-P-K from CMC/Bentonite/N-P-K followed the kinetic release model of pseudo-second-order.
APA, Harvard, Vancouver, ISO, and other styles
2

Bharadwaj, Lavanya, Abhijeet Dhamne, Linan An, Barry Fookes, Jay Kapat, and Louis Chow. "Polymer-Derived Si-Al-C-N-O Ceramics for High Temperature Applications." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38561.

Full text
Abstract:
Polymer-derived ceramics are a new class of materials synthesized by thermal decomposition of polymeric precursors. The resultant materials are amorphous alloys of silicon, carbon, and nitrogen, which can be converted to crystalline materials by annealing at higher temperatures. This novel chemical-to-ceramic route offers a unique opportunity to tailor the structures and compositions, therefore the properties, of the resultant materials by designing the chemistry of the precursors. In this paper we report the studies on synthesis and oxidation behavior of polymer-derived SiAlCN materials. The precursor was synthesized by mixing a polysilazane and aluminum isopropoxide. The mixture was then pyrolyzed at 1000°C in Ar/N2 to convert to SiAlCNO ceramics. The oxidation studies revealed that the SiAlCNO possesses a lower oxidation rate than SiCN. It is believed that the better oxidation resistance exhibited by SiAlCN is due to the oxide layer containing Al, which makes oxygen diffusion more difficult than in pure SiO2. The materials are promising for many high temperature applications, e.g. environmental barrier coatings, high temperature fibers, matrixes for composites, and even monolithic components.
APA, Harvard, Vancouver, ISO, and other styles
3

Chopra, O. K., E. E. Gruber, B. Alexandreanu, Y. Chen, and W. J. Shack. "Crack Growth Rates of Irradiated Austenitic Stainless Steels in BWR Environments at 289°C." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26659.

Full text
Abstract:
Crack growth rate (CGR) data have been obtained in boiling water reactor environments on several grades of austenitic stainless steels, including weld heat-affected-zone and cast materials, that were irradiated up to 2.0 × 1021 n/cm2 (E > 1 MeV) (≈3 dpa). Crack growth tests were conducted on 1/4-T compact tension specimens subjected to either a sawtooth waveform with load ratios up to 0.7 and rise times up to 1000 s, or a constant load with or without periodic partial unloading. The results indicate significant enhancement of crack growth rates in the irradiated steels. The results are compared with data obtained from other studies. The existing CGR data are also reviewed to evaluate the effects of material composition, irradiation, and water chemistry on the CGRs in austenitic SSs. The significance of specimen size criteria is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Dennis Y., and Edward J. Anthony. "Combustion Characteristics of Natural Gas in a Circulating Fluidized Bed." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-053.

Full text
Abstract:
Recently there has been interest in extending the application of fluidized bed combustors (FBCs) to fuels with difficult handling properties or ones that are associated with non-conventional air pollutant problems. These fuels, such as biomass, plastic wastes, black liquors and heavy liquid fuels, have very high volatiles contents and, because they are often treated as easily-burned materials, they have received much less attention than has been given say to the combustion processes for char in FBCs. Understanding their gas-phase chemistry is helpful in optimizing their combustion. This paper describes the study of natural gas combustion in a fluidized bed as a simple model for studying gas-phase reactions involving C/H/N/O chemistry in the absence of char. The experimental work was conducted using a pilot-scale CFBC unit. Combustion characteristics and emissions were investigated by varying the operating conditions and in particular the combustion temperature, fluidizing velocity and bed material. The results indicated that fluidized bed combustion chemistry is associated with superequilibrium free radical processes, similar to high-temperature flame systems. In this system, prompt-NO mechanisms are the only routes for NO formation and this work shows that they can lead to significant NOx production.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Libo, Yulong Zhao, and Zhuangde Jiang. "Design and Fabrication of a High Temperature Pressure Sensor." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21517.

Full text
Abstract:
Based on Silicon on Insulator (SOI) and Micro Electro Mechanical System (MEMS) technology, a single-crystal silicon piezoresistive strain gage was fabricated and constituted by silicon substrate, a thin SiO2 layer by Separation by Implantation of Oxygen (SIMOX), an optimized boron ion implantation doping layer photo lithographed to discrete piezoresistors, stress matching Si3N4 layer, and metallization scheme of Ti/Pt/Au as beam lead layer for connecting piezoresistors to be Wheatstone bridge configuration. A special buried SiO2 layer with the thickness of 367 nm was fabricated by the SIMOX technology, which replaced p-n junction to isolate the piezoresistors from the bulk silicon substrate, so this kind of single-crystal silicon strain gage can be used in many harsh fields under high temperature up to 350°C. By the single-crystal silicon strain gage packaged on the metallic circular flat diaphragm, and along with other thermal treatments and compensating methods, a high temperature pressure sensor has been developed with the pressure range of 0–120 MPa under high temperature above 200°C. The testing results show that the sensor has good static performances under 200°C and fine dynamic characteristics to meet the requirements of the modern industry, such as petroleum and chemistry, mobile industry, military industry, wind tunnels, materials processing.
APA, Harvard, Vancouver, ISO, and other styles
6

Vodopyanov, Alexander, Andrey Samokhin, Nikolay Aleksev, Mikhail Sinayskiy, Andrey Sorokin, and Sergey Sintsov. "TUNGSTEN CARBIDE NANOPOWDER SYNTHESIS UNDER THE EXPOSURE OF 24 GHZ GYROTRON RADIATION ON THE NANOCOMPOSITE OF THE W-C SYSTEM OBTAINED IN A THERMAL PLASMA." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9836.

Full text
Abstract:
Nanoscale tungsten carbide WC powders are of practical interest for the creation of nanostructured hard alloys with enhanced physical and mechanical characteristics, wear-resistant nanostructured coatings, electrocatalysts in fuel cells, metal melt modifiers [1]. An efficient method for producing tungsten carbide nanopowder is a plasma-chemical synthesis of a multi-component powder nanocomposite system W-C in combination with its subsequent heat treatment [2]. Experimental studies have shown the possibility of producing tungsten carbide WC nanopowder by this method. But the transformation of the nanocomposite in the target product is accompanied by an increase in the size of nanoparticles. We assume that this growth is associated with prolonged heating (several hours) in an electric furnace at a temperature of about 1000 ° C. This time is necessary for the complete transformation of the nanocomposite into the target product. The aim of the work was an experimental study of the formation of tungsten carbide nanopowder WC when processing a multi-component powder nanocomposite system W-C in an electromagnetic field with a frequency of 24 GHz. A multipurpose gyrotron system with a nominal power of 7 kW with at a frequency of 24 GHz was used for the experiments. The microwave application system described in [3]. The powders were treated in an argon flow. The experiments were carried varying exposure time and microwave power. The samples of nanopowders obtained in the experiments were analyzed using the following methods: XRD, TEM, SEM, BET, LDA, CEA. It was established that microwave radiation with a frequency of 24 GHz allows heating samples of powders to a temperature of 1100-1200 C almost immediately (after 1-2 s) after switching on. The tungsten carbide WC is formed in a few minutes under the exposure to microwave radiation of the original W-C nanocomposite system. There is only a slight increase in the average particle size from 20 to 30 nm. The investigations showed that the synthesis of tungsten carbide WC under the microwave heating as compared to conventional heating in an electric furnace may be carried out for significantly less time while maintaining the particles in the nanometer range.The work was carried out within the framework of the Program #14 "Physical chemistry of adsorption phenomena and actinide nanoparticles" of the Presidium of the Russian Academy of Sciences.References Z. Zak Fang, Xu Wang, et al. Int. Journal of Refractory Metals & Hard Materials, 2009, 27, 288–299.Samokhin A., Alekseev N., et al. Plasma Chem. Plasma Proc., 2013, 33, 605–616.Samokhin A., Alekseev N., et al. J. Nanotechnol. Eng. Med., 2015, 6, 011008.
APA, Harvard, Vancouver, ISO, and other styles
7

Ou, Junjie, Shuwen Wang, Carolyn L. Ren, and Janusz Pawliszyn. "Preparation of Poly(Dimethylsiloxane) Chip-Based Cartridge for Isoelectric Focusing and Whole-Channel Imaging Detection." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70303.

Full text
Abstract:
A poly(dimethylsiloxane) (PDMS) microfluidic chip-based cartridge was fabricated by sandwiching commercial dialysis membrane and inserting fused-silica capillary into the end of channel according to the principle and structure of a commercial fused-silicon capillary-based cartridge, which can adapt to an IEF analyzer for isoelectric focusing with whole channel imaging detection (IEF-WCID). The novel design of sandwiching membrane in this chip not only eliminated the unfavorable hydrodynamic pressure, leading to poor IEF reproducibility, but made the sample injection much easy. Thus the reproducibility of analysis was very good. The prepared microfluidic chips were applied for qualitative and quantitative analysis of proteins. The six pI markers in the range of 3–10 were separated by IEF under the optimized conditions. The pH gradients exhibited good linear by plotting the pI versus peak position, and the correlation coefficient reached to 0.9994 and 0.9995. The separation of more complicated human hemoglobin control and myoglobin sample could be achieved. By comparison with the separation efficiency obtained on the microfluidic chip and commercial cartridge, the results were similar, which indicates the capillary cartridge may be replaced with the cost-efficient PDMS microfluidic chip. It is anticipated the high throughput analysis can be easily performed on this microfluidic chip patterned multi-channels. The techniques of capillary electrophoresis (CE) have been extensively explored for the chip-based separation. Isoelectric focusing (IEF) as one of high-resolution CE techniques has been widely applied for the separation of zwitterionic biomolecules, such as proteins and peptides. After the samples were focused at their corresponding pIs, the focused zones were mobilized to pass through the detection point for obtaining an electropherogram. This single-point detection imposes extensive restriction for chip-based IEF because a mobilization process requires additional time and lowers resolution and reproducibility of the separation [1]. An alternative is whole-column imaging detection developed by Pawliszyn et al [2] is an ideal detection method for IEF because no mobilization is required, which avoids the disadvantages as mentioned previously. Most microfluidic systems could be fabricated in glass/silicon or polymers in which the channels are defined using photolithography and micromachining. Mao and Pawliszyn [3] have developed a method for IEF on an etched quartz chip following whole-channel imaging detection (WCID). Ren et al [4] presented an integrated WCID system on glass microfluidic chip. However, these materials have some disadvantages such as expensive and fragile and so on. An attractive alternative for fabrication of microfluidic devices is using poly(dimethylsiloxane) (PDMS) as material, which has unique properties such as nontoxic, optical transparent down to 280 nm, elastomeric, hydrophobic surface chemistry Yao et al. [5] designed the glass/PDMS microchip integrated whole-column fluorescence imaging detection for IEF of R-phycoerythrin. Our preliminary studies have successfully developed a PDMS chip-based cartridge for IEF-WCID. It is due to hydrodynamic flow between two reservoirs that the focused zones were mobilized, thus gave poor reproducibility and difficulty in sample infusion. As membranes have been integrated into microchips for microdialysis, protein digestion, solid-phase extraction, desalting, pumping and so on, it could minimize hydrodynamic flow by using membranes as a filter. Although a simple PDMS chip-based cartridge has been successfully fabricated in our labs according to the principle of commercial capillary-based cartridge, it is difficult to introduce the sample into channel for IEF-WCID. As the vacuum was applied in one end of channel for infusing of solution into channel, the lifetime of this chip-based cartridge is shortened. Additionally, the hydrodynamic flow is occurred due to the different heights of anolyte and catholyte in two reservoirs, respectively. The IEF separation was deteriorated by the infusion of anolyte or catholyte, thus leading to poor reproducibility of IEF-WCID analysis. Similar to the hollow fiber in the commercial capillary-based cartridge in which it is aimed to separate the sample in the capillary and electrolytes in the reservoirs, porous membrane was integrated into PDMS chips for decrease of hydrodynamic flow [6]. As a result, integration of dialysis membrane is considered into the design of our new chip-based cartridge. Up to now, many approaches have been described to integrate membranes into glass/quartz or polymeric microfluidic chips. A simple method is direct incorporation by gluing or clamping commercial flat membranes. A major problem of this method is sealing, otherwise, a phenomenon of leakage around the membranes is always occurred due to the capillary force. A novel approach of sandwiching dialysis membrane was developed as schematically indicated in Figure 1. After optimizing IEF conditions, the separation of pI markers was performed on the obtained PDMS microfluidic chip. As exhibited in Figure 2a, six pI markers could be well separated on the PDMS chips patterned the channel of 100 μm deep, 100 μm wide by IEF-WCID. All the peaks were sharp and symmetric, indicating that both EOF and analytes adsorption were completely suppressed by the dynamic coating of PVP. The plots of peak position versus pI of these pI markers suggested good linearity of pH gradient (as shown in Figure 2b). The linear correlation coefficient was 0.9995 (n = 6). As expected to the capillary-based cartridge, the PDMS microfluidic chips could be applied for qualitative and quantitative analysis of proteins. Figure 3a exhibited that human hemoglobin control AFSC contains four known isoforms (HbA, HbF, HbS and HbC) mixed with two pI marker 6.14 and 8.18 were well separated on the PDMS chip by IEF-WCID, indicating the strong separation ability of chip similar to the commercial capillary-based cartridge. According to the linearity of pH gradient, these four isoforms with the pIs of 7.0, 7.1, 7.3 and 7.5, respectively, could be detected. An unknown isoform in human hemoglobin control marked asterisk in Figure 3A observed besides the definite four isoforms A, F, S and C. The myoglobin from horse heart contains two isoforms, whose pIs are 6.8 and 7.2, respectively. It can be seen from Figure 3b that these two isoforms were separated on PDMS chip by IEF-WCID. The peak 1 and 2 could be assigned to the two isoforms according to their pI. The pI of unknown peak marked asterisk could be measured to 6.25.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography