Dissertations / Theses on the topic 'Machine vision; Object tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Machine vision; Object tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Case, Isaac. "Automatic object detection and tracking in video /." Online version of thesis, 2010. http://hdl.handle.net/1850/12332.
Full textClarke, John Christopher. "Applications of sequence geometry to visual motion." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244549.
Full textTydén, Amanda, and Sara Olsson. "Edge Machine Learning for Animal Detection, Classification, and Tracking." Thesis, Linköpings universitet, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166572.
Full textStigson, Magnus. "Object Tracking Using Tracking-Learning-Detection inThermal Infrared Video." Thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93936.
Full textPatrick, Ryan Stewart. "Surveillance in a Smart Home Environment." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1278508516.
Full textMoujtahid, Salma. "Exploiting scene context for on-line object tracking in unconstrained environments." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI110/document.
Full textWith the increasing need for automated video analysis, visual object tracking became an important task in computer vision. Object tracking is used in a wide range of applications such as surveillance, human-computer interaction, medical imaging or vehicle navigation. A tracking algorithm in unconstrained environments faces multiple challenges : potential changes in object shape and background, lighting, camera motion, and other adverse acquisition conditions. In this setting, classic methods of background subtraction are inadequate, and more discriminative methods of object detection are needed. Moreover, in generic tracking algorithms, the nature of the object is not known a priori. Thus, off-line learned appearance models for specific types of objects such as faces, or pedestrians can not be used. Further, the recent evolution of powerful machine learning techniques enabled the development of new tracking methods that learn the object appearance in an online manner and adapt to the varying constraints in real time, leading to very robust tracking algorithms that can operate in non-stationary environments to some extent. In this thesis, we start from the observation that different tracking algorithms have different strengths and weaknesses depending on the context. To overcome the varying challenges, we show that combining multiple modalities and tracking algorithms can considerably improve the overall tracking performance in unconstrained environments. More concretely, we first introduced a new tracker selection framework using a spatial and temporal coherence criterion. In this algorithm, multiple independent trackers are combined in a parallel manner, each of them using low-level features based on different complementary visual aspects like colour, texture and shape. By recurrently selecting the most suitable tracker, the overall system can switch rapidly between different tracking algorithms with specific appearance models depending on the changes in the video. In the second contribution, the scene context is introduced to the tracker selection. We designed effective visual features, extracted from the scene context to characterise the different image conditions and variations. At each point in time, a classifier is trained based on these features to predict the tracker that will perform best under the given scene conditions. We further improved this context-based framework and proposed an extended version, where the individual trackers are changed and the classifier training is optimised. Finally, we started exploring one interesting perspective that is the use of a Convolutional Neural Network to automatically learn to extract these scene features directly from the input image and predict the most suitable tracker
Skjong, Espen, and Stian Aas Nundal. "Tracking objects with fixed-wing UAV using model predictive control and machine vision." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25990.
Full textAdeboye, Taiyelolu. "Robot Goalkeeper : A robotic goalkeeper based on machine vision and motor control." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27561.
Full textBarkman, Richard Dan William. "Object Tracking Achieved by Implementing Predictive Methods with Static Object Detectors Trained on the Single Shot Detector Inception V2 Network." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-73313.
Full textI detta arbete undersöks möjligheten att åstadkomma objektefterföljning genom att implementera prediktiva metoder med statiska objektdetektorer. De statiska objektdetektorerna erhålls som modeller tränade på en maskininlärnings-algoritm, det vill säga djupa neurala nätverk. Specifikt så är det en modifierad version av entagningsdetektor-nätverket, så kallat entagningsdetektor inception v2 nätverket, som används för att träna modellerna. Prediktiva metoder inkorporeras sedan för att förbättra modellernas förmåga att kunna finna ett eftersökt objekt. Nämligen används Lagrangiansk mekanik för härleda rörelseekvationer för vissa scenarion i vilka objektet är tänkt att efterföljas. Rörelseekvationerna implementeras genom att låta diskretisera dem och därefter kombinera dem med fyra olika iterationsformler. I kap. 2 behandlas grundläggande teori för övervakad maskininlärning, neurala nätverk, faltande neurala nätverk men också de grundläggande principer för entagningsdetektor-nätverket, närmanden till hyperparameter-optimering och övrig relevant teori. Detta inkluderar härledningar av rörelseekvationerna och de iterationsformler som de skall kombineras med. I kap. 3 så redogörs för den experimentella uppställning som användes vid datainsamling samt hur denna data användes för att producera olika data set. Därefter följer en skildring av hur random search kunde användas för att träna 64 modeller på data av upplösning 300×300 och 32 modeller på data av upplösning 512×512. Vidare utvärderades modellerna med avseende på deras prestanda för varierande kamera-till-objekt avstånd och objekthastighet. I kap. 4 så verifieras det att modellerna har en förmåga att detektera på flera skalor, vilket är ett karaktäristiskt drag för modeller tränade på entagninsdetektor-nätverk. Medan detta gällde för de tränade modellerna oavsett vilken upplösning av data de blivit tränade på, så fanns detekteringsprestandan med avseende på objekthastighet vara betydligt mer konsekvent för modellerna som tränats på data av lägre upplösning. Detta resulterade av att dessa modeller kan arbeta med en högre detekteringsfrekvens. Kap. 4 fortsätter med att de prediktiva metoderna utvärderas, vilket de kunde göras genom att jämföra den resulterande avvikelsen de respektive metoderna innebar då de läts arbeta på ett samplat detektionsmönster, sparat från då en tränad modell körts. I och med denna utvärdering så testades modellerna för olika samplingsgrader. Det visade sig att de bästa iterationsformlerna var de som byggde på färre tidigare datapunkter. Anledningen för detta är att den insamlade data, som testerna utfördes på, innehöll en avsevärd mängd brus. Med tanke på att de implementerade iterationsformlerna inte tar hänsyn till brus, så fick detta avgörande konsekvenser. Det fanns även att alla prediktiva metoder förbättrade objektdetekteringsförmågan till en högre utsträckning för modellerna som var tränade på data av lägre upplösning, vilket följer från att de kan arbeta med en högre detekteringsfrekvens. I kap. 5, argumenteras det, bland annat, för att konceptet att kombinera prediktiva metoder med statiska objektdetektorer för att åstadkomma objektefterföljning är lovande. Det slutleds även att modeller som erhålls från entagningsdetektor-nätverket är lovande kandidater för detta applikationsområde, till följd av deras höga detekteringsfrekvenser och förmåga att kunna detektera på flera skalor. Metoderna som användes för att förutsäga det efterföljda föremålets position fanns vara odugliga på grund av deras oförmåga att kunna hantera brus. Det slutleddes därmed att dessa antingen bör utökas till att kunna hantera brus eller ersättas av lämpligare metoder. Den mest väsentliga slutsats detta arbete presenterar är att lågupplösta entagninsdetektormodeller utgör bättre kandidater än de tränade på data av högre upplösning till följd av den ökade detekteringsfrekvens de erbjuder.
Ozertem, Kemal Arda. "Vision-assisted Object Tracking." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614073/index.pdf.
Full textfor moving object detection, two different background modeling methods are developed. The second part is feature extraction and estimation of optical flow between video frames. As the feature extraction method, a well-known corner detector algorithm is employed and this extraction is applied only at the moving regions in the scene. For the feature points, the optical flow vectors are calculated by using an improved version of Kanade Lucas Tracker. The resulting optical flow field between consecutive frames is used directly in proposed tracking method. In the third part, a particle filter structure is build to provide tracking process. However, the particle filter is improved by adding optical flow data to the state equation as a correction term. In the last part of the study, the performance of the proposed approach is compared against standard implementations particle filter based trackers. Based on the simulation results in this study, it could be argued that insertion of vision-based optical flow estimation to tracking formulation improves the overall performance.
Benfold, Ben. "The acquisition of coarse gaze estimates in visual surveillance." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:59186519-9fee-4005-9570-0e3cf0384447.
Full textMozaffari, Maaref Mohammad Hamed. "A Real-Time and Automatic Ultrasound-Enhanced Multimodal Second Language Training System: A Deep Learning Approach." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40477.
Full textLaw, Albert. "Experiments in object tracking in image sequences." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100229.
Full textBrown, Gary. "An object oriented model of machine vision." Thesis, Kingston University, 1997. http://eprints.kingston.ac.uk/20614/.
Full textD'Souza, Collin. "Machine vision for shape and object recognition." Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314332.
Full textCalminder, Simon, and Chittum Mattew Källström. "Object Tracking andInterception System : Mobile Object Catching Robot using StaticStereo Vision." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230249.
Full textI detta projekt behandlas konstruktionen av och pålitligheteni en bollfånganderobot och dess bakomliggande lågbudgetkamerasystem.För att fungera i tre dimensioner användsen stereokameramodul som spårar bollen med hjälpav färgigenkänning och beräknar bollbanan samt förutspårnedslaget för att ge god tid till roboten att genskjuta bollen.Två olika bollbanemodeller testas, där den ena tar hänsyntill luftmotståndet och nedslaget beräknas numeriskt ochden andra anpassar en andragradspolynom till de observeradedatapunkterna.För att styra roboten till den tänkta uppfångningspunktenbehövs både robotens position, vilket bestäms med kameramodulen,och robotens riktning. Riktningen bestäms medbåde en magnetometer och med kameramodulen, för attundersöka vilken metod som passar bäst.Den förslagna konstruktionen för roboten och kamerasystemetkan spåra och fånga objekt med bådadera de testademodellerna för att beräkna bollbana, dock så är tillförlitligheteni den numeriska metoden betydligt känsligare fördåliga mätvärden. Det är även möjligt att använda sig avbåde magnetometern eller endast kameramodulen för attbestämma robotens riktning då båda ger ett fel under 1.5°.
Tsitiridis, Aristeidis. "Biologically-inspired machine vision." Thesis, Cranfield University, 2013. http://dspace.lib.cranfield.ac.uk/handle/1826/8029.
Full textThomas, Brigneti Andrés Attilio. "Multi-object tracking with camera." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/170746.
Full textEn este trabajo se evaluarán distintos algoritmos de trackeo para el problema de seguimiento de peatones, donde teniendo un video obtenido de una camara de seguridad, nos interesa reconocer correctamente cada individuo a traves del tiempo, buscando minimizar la cantindad de etiquetas mal asignadas y objetos (peatones) no identificados. Para esto se ocuparán algorimos basados en el concepto de Conjuntos Aleatorios Finitos (Random Finite Sets - RFS), los cuales usan mediciones pasadas de los objetos para predecir posiciones futuras de todos ellos simultaneamente, mientras que también se consideran los casos de nacimientos y muertes de los objetos. Estos algoritmos fueron concebidos para el trackeo de objetos con movimientos simples y predecibles en condiciones de una gran cantidad ruido en las mediciones. mientras que las condiciones en las que se evaluarán son drasticamente opuestas, con un nivel muy alto de certeza en las mediciones pero con movimientos altamente no linear y muy impredecible. Se ocupará una libreria abierta creada por el investigador Ba Tuong Vo, donde están implementados varios de los más clásicos algoritmos en esta área. Es por esto que el trabajo se basará más en el análisis de los resultados en estas nuevas condiciones y observar como se comparán a los algoritmos actuales del area de Computer Vision (CV)/ Machine Learning (ML), usando tanto métricas de RFS como del área de CV.
Leavers, Violet. "Shape parametrisation and object recognition in machine vision." Thesis, King's College London (University of London), 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243898.
Full textSun, Yaoru. "Hierarchical object-based visual attention for machine vision." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/316.
Full textSun, Shijun. "Video object segmentation and tracking using VSnakes /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/6038.
Full textBerry, David T. "A knowledge-based framework for machine vision." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1022.
Full textCALMINDER, SIMON, and CHITTUM MATTHEW KÄLLSTRÖM. "Object Tracking and Interception System : Mobile Object Catching Robot using Static Stereo Vision." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233135.
Full textI detta projekt behandlas konstruktionen av och pålitligheten i en bollfånganderobot och dess bakomliggande lågbudgetkamerasystem. För att fungera i tre dimensioner används en stereokameramodul som spårar bollen med hjälp av färgigenkänning och beräknar bollbanan samt förutspår nedslaget för att ge god tid till roboten att genskjuta bollen. Två olika bollbanemodeller testas, där den ena tar hänsyn till luftmotståndet och nedslaget beräknas numeriskt och den andra anpassar en andragradspolynom till de observerade datapunkterna. För att styra roboten till den tänkta uppfångningspunkten behövs både robotens position, vilket bestäms med kameramodulen, och robotens riktning.Riktningen bestäms medbåde en magnetometer och med kameramodulen, för att undersöka vilken metod som passar bäst. Den förslagna konstruktionen för roboten och kamerasystemet kan spåra och fånga objekt med bådadera de testade modellerna för att beräkna bollbana, dock så är tillförlitligheten i den numeriska metoden betydligt känsligare för dåliga mätvärden. Det är även möjligt att använda sig av både magnetometern eller endast kameramodulen för att bestämma robotens riktning då båda ger ett fel under 1.5°.
Khaligh-Razavi, Seyed-Mahdi. "Representational geometries of object vision in man and machine." Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708729.
Full textTuresson, Eric. "Multi-camera Computer Vision for Object Tracking: A comparative study." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21810.
Full textSilva, João Miguel Ferreira da. "People and object tracking for video annotation." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8953.
Full textObject tracking is a thoroughly researched problem, with a body of associated literature dating at least as far back as the late 1970s. However, and despite the development of some satisfactory real-time trackers, it has not yet seen widespread use. This is not due to a lack of applications for the technology, since several interesting ones exist. In this document, it is postulated that this status quo is due, at least in part, to a lack of easy to use software libraries supporting object tracking. An overview of the problems associated with object tracking is presented and the process of developing one such library is documented. This discussion includes how to overcome problems like heterogeneities in object representations and requirements for training or initial object position hints. Video annotation is the process of associating data with a video’s content. Associating data with a video has numerous applications, ranging from making large video archives or long videos searchable, to enabling discussion about and augmentation of the video’s content. Object tracking is presented as a valid approach to both automatic and manual video annotation, and the integration of the developed object tracking library into an existing video annotator, running on a tablet computer, is described. The challenges involved in designing an interface to support the association of video annotations with tracked objects in real-time are also discussed. In particular, we discuss our interaction approaches to handle moving object selection on live video, which we have called “Hold and Overlay” and “Hold and Speed Up”. In addition, the results of a set of preliminary tests are reported.
project “TKB – A Transmedia Knowledge Base for contemporary dance” (PTDC/EA /AVP/098220/2008 funded by FCT/MCTES), the UTAustin – Portugal, Digital Media Program (SFRH/BD/42662/2007 FCT/MCTES) and by CITI/DI/FCT/UNL (Pest-OE/EEI/UI0527/2011)
Kim, Sunyoung. "The mathematics of object recognition in machine and human vision." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2425.
Full textVerdie, Yannick. "Surface Gesture & Object Tracking on Tabletop Devices." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32769.
Full textMaster of Science
Huang, Kuang Man. "Tracking and analysis of C. elegans behavior using machine vision." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3297739.
Full textTitle from first page of PDF file (viewed August 8, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 108-112).
Kim, Kyungnam. "Algorithms and evaluation for object detection and tracking in computer vision." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2925.
Full textThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wallenberg, Marcus. "Embodied Visual Object Recognition." Doctoral thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132762.
Full textEmbodied Visual Object Recognition
FaceTrack
Brohan, Kevin Patrick. "Search and attention for machine vision." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/search-and-attention-for-machine-vision(a4747c9b-ac13-46d1-8895-5f2d88523d80).html.
Full textLevy, Alfred K. "Object tracking in low frame-rate video sequences." Honors in the Major Thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/339.
Full textBachelors
Engineering
Computer Science
Krieger, Evan. "Adaptive Fusion Approach for Multiple Feature Object Tracking." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton15435905735447.
Full textEslami, Seyed Mohammadali. "Generative probabilistic models for object segmentation." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/8898.
Full textLan, Xiangyuan. "Multi-cue visual tracking: feature learning and fusion." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/319.
Full textYamato, Junji 1964. "Tracking moving object by stereo vision head with vergence for humanoid robot." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9950.
Full textWaddington, Gary. "Biedermans Recognition by Components (RBC) theory of human object recognition - an investigation." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301971.
Full textMhalla, Ala. "Multi-object detection and tracking in video sequences." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC084/document.
Full textThe work developed in this PhD thesis is focused on video sequence analysis. Thelatter consists of object detection, categorization and tracking. The development ofreliable solutions for the analysis of video sequences opens new horizons for severalapplications such as intelligent transport systems, video surveillance and robotics.In this thesis, we put forward several contributions to deal with the problems ofdetecting and tracking multi-objects on video sequences. The proposed frameworksare based on deep learning networks and transfer learning approaches.In a first contribution, we tackle the problem of multi-object detection by puttingforward a new transfer learning framework based on the formalism and the theoryof a Sequential Monte Carlo (SMC) filter to automatically specialize a Deep ConvolutionalNeural Network (DCNN) detector towards a target scene. The suggestedspecialization framework is used in order to transfer the knowledge from the sourceand the target domain to the target scene and to estimate the unknown target distributionas a specialized dataset composed of samples from the target domain. Thesesamples are selected according to the importance of their weights which reflectsthe likelihood that they belong to the target distribution. The obtained specializeddataset allows training a specialized DCNN detector to a target scene withouthuman intervention.In a second contribution, we propose an original multi-object tracking frameworkbased on spatio-temporal strategies (interlacing/inverse interlacing) and aninterlaced deep detector, which improves the performances of tracking-by-detectionalgorithms and helps to track objects in complex videos (occlusion, intersection,strong motion).In a third contribution, we provide an embedded system for traffic surveillance,which integrates an extension of the SMC framework so as to improve the detectionaccuracy in both day and night conditions and to specialize any DCNN detector forboth mobile and stationary cameras.Throughout this report, we provide both quantitative and qualitative results.On several aspects related to video sequence analysis, this work outperformsthe state-of-the-art detection and tracking frameworks. In addition, we havesuccessfully implemented our frameworks in an embedded hardware platform forroad traffic safety and monitoring
Lin, Cong. "Non-rigid visual object tracking with statistical learning of appearance model." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691900.
Full textCuan, Bonan. "Deep similarity metric learning for multiple object tracking." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI065.
Full textMultiple object tracking, i.e. simultaneously tracking multiple objects in the scene, is an important but challenging visual task. Objects should be accurately detected and distinguished from each other to avoid erroneous trajectories. Since remarkable progress has been made in object detection field, “tracking-by-detection” approaches are widely adopted in multiple object tracking research. Objects are detected in advance and tracking reduces to an association problem: linking detections of the same object through frames into trajectories. Most tracking algorithms employ both motion and appearance models for data association. For multiple object tracking problems where exist many objects of the same category, a fine-grained discriminant appearance model is paramount and indispensable. Therefore, we propose an appearance-based re-identification model using deep similarity metric learning to deal with multiple object tracking in mono-camera videos. Two main contributions are reported in this dissertation: First, a deep Siamese network is employed to learn an end-to-end mapping from input images to a discriminant embedding space. Different metric learning configurations using various metrics, loss functions, deep network structures, etc., are investigated, in order to determine the best re-identification model for tracking. In addition, with an intuitive and simple classification design, the proposed model achieves satisfactory re-identification results, which are comparable to state-of-the-art approaches using triplet losses. Our approach is easy and fast to train and the learned embedding can be readily transferred onto the domain of tracking tasks. Second, we integrate our proposed re-identification model in multiple object tracking as appearance guidance for detection association. For each object to be tracked in a video, we establish an identity-related appearance model based on the learned embedding for re-identification. Similarities among detected object instances are exploited for identity classification. The collaboration and interference between appearance and motion models are also investigated. An online appearance-motion model coupling is proposed to further improve the tracking performance. Experiments on Multiple Object Tracking Challenge benchmark prove the effectiveness of our modifications, with a state-of-the-art tracking accuracy
Ingersoll, Kyle. "Vision Based Multiple Target Tracking Using Recursive RANSAC." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/4398.
Full textClark, Daniel S. "Object detection and tracking using a parts-based approach /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1167.
Full textkhan, saad. "MULTI-VIEW APPROACHES TO TRACKING, 3D RECONSTRUCTION AND OBJECT CLASS DETECTION." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4066.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science PhD
Sigal, Leonid. "Continuous-state graphical models for object localization, pose estimation and tracking." View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3318361.
Full textDoran, Matthew M. "The role of visual attention in multiple object tracking evidence from ERPS." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 110 p, 2009. http://proquest.umi.com/pqdweb?did=1885675151&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textAtkins, Philip J. "Spatiotemporal filtering with neural circuits for motion detection and tracking." Thesis, University of Brighton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318727.
Full textVinther, Sven. "Active 3D object recognition using geometric invariants." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362974.
Full textNelson, Eric D. "Zoom techniques for achieving scale invariant object tracking in real-time active vision systems /." Online version of the thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/2620.
Full textRodríguez, Florez Sergio Alberto. "Contributions by vision systems to multi-sensor object localization and tracking for intelligent vehicles." Compiègne, 2010. http://www.theses.fr/2010COMP1910.
Full textAdvanced Driver Assistance Systems (ADAS) can improve road safety by supporting the driver through warnings in hazardous circumstances or triggering appropriate actions when facing imminent collision situations (e. G. Airbags, emergency brake systems, etc). In this context, the knowledge of the location and the speed of the surrounding mobile objects constitute a key information. Consequently, in this work, we focus on object detection, localization and tracking in dynamic scenes. Noticing the increasing presence of embedded multi-camera systems on vehicles and recognizing the effectiveness of lidar automotive systems to detect obstacles, we investigate stereo vision systems contributions to multi-modal perception of the environment geometry. In order to fuse geometrical information between lidar and vision system, we propose a calibration process which determines the extrinsic parameters between the exteroceptive sensors and quantifies the uncertainties of this estimation. We present a real-time visual odometry method which estimates the vehicle ego-motion and simplifies dynamic object motion analysis. Then, the integrity of the lidar-based object detection and tracking is increased by the means of a visual confirmation method that exploits stereo-vision 3D dense reconstruction in focused areas. Finally, a complete full scale automotive system integrating the considered perception modalities was implemented and tested experimentally in open road situations with an experimental car