Academic literature on the topic 'Machine vision; Object tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine vision; Object tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine vision; Object tracking"
Patil, Rupali, Adhish Velingkar, Mohammad Nomaan Parmar, Shubham Khandhar, and Bhavin Prajapati. "Machine Vision Enabled Bot for Object Tracking." JINAV: Journal of Information and Visualization 1, no. 1 (October 1, 2020): 15–26. http://dx.doi.org/10.35877/454ri.jinav155.
Full textLlano, Christian R., Yuan Ren, and Nazrul I. Shaikh. "Object Detection and Tracking in Real Time Videos." International Journal of Information Systems in the Service Sector 11, no. 2 (April 2019): 1–17. http://dx.doi.org/10.4018/ijisss.2019040101.
Full textZhang, Xiao Jing, Chen Ming Sha, and Ya Jie Yue. "A Fast Object Tracking Approach in Vision Application." Applied Mechanics and Materials 513-517 (February 2014): 3265–68. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3265.
Full textLiu, Liyun. "Moving Object Detection Technology of Line Dancing Based on Machine Vision." Mobile Information Systems 2021 (April 26, 2021): 1–9. http://dx.doi.org/10.1155/2021/9995980.
Full textWang, Yongqing, and Yanzhou Zhang. "OBJECT TRACKING BASED ON MACHINE VISION AND IMPROVED SVDD ALGORITHM." International Journal on Smart Sensing and Intelligent Systems 8, no. 1 (2015): 677–96. http://dx.doi.org/10.21307/ijssis-2017-778.
Full textJun, Mao. "Object Detection and Recognition Algorithm of Moving UAV Based on Machine Vision." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 7731–37. http://dx.doi.org/10.1166/jctn.2016.5770.
Full textZhang, Zheng, Cong Huang, Fei Zhong, Bote Qi, and Binghong Gao. "Posture Recognition and Behavior Tracking in Swimming Motion Images under Computer Machine Vision." Complexity 2021 (May 20, 2021): 1–9. http://dx.doi.org/10.1155/2021/5526831.
Full textAkbari Sekehravani, Ehsan, Eduard Babulak, and Mehdi Masoodi. "Flying object tracking and classification of military versus nonmilitary aircraft." Bulletin of Electrical Engineering and Informatics 9, no. 4 (August 1, 2020): 1394–403. http://dx.doi.org/10.11591/eei.v9i4.1843.
Full textDelforouzi, Ahmad, Bhargav Pamarthi, and Marcin Grzegorzek. "Training-Based Methods for Comparison of Object Detection Methods for Visual Object Tracking." Sensors 18, no. 11 (November 16, 2018): 3994. http://dx.doi.org/10.3390/s18113994.
Full textAziz, Nor Nadirah Abdul, Yasir Mohd Mustafah, Amelia Wong Azman, Amir Akramin Shafie, Muhammad Izad Yusoff, Nor Afiqah Zainuddin, and Mohammad Ariff Rashidan. "Features-Based Moving Objects Tracking for Smart Video Surveillances: A Review." International Journal on Artificial Intelligence Tools 27, no. 02 (March 2018): 1830001. http://dx.doi.org/10.1142/s0218213018300016.
Full textDissertations / Theses on the topic "Machine vision; Object tracking"
Case, Isaac. "Automatic object detection and tracking in video /." Online version of thesis, 2010. http://hdl.handle.net/1850/12332.
Full textClarke, John Christopher. "Applications of sequence geometry to visual motion." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244549.
Full textTydén, Amanda, and Sara Olsson. "Edge Machine Learning for Animal Detection, Classification, and Tracking." Thesis, Linköpings universitet, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166572.
Full textStigson, Magnus. "Object Tracking Using Tracking-Learning-Detection inThermal Infrared Video." Thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93936.
Full textPatrick, Ryan Stewart. "Surveillance in a Smart Home Environment." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1278508516.
Full textMoujtahid, Salma. "Exploiting scene context for on-line object tracking in unconstrained environments." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI110/document.
Full textWith the increasing need for automated video analysis, visual object tracking became an important task in computer vision. Object tracking is used in a wide range of applications such as surveillance, human-computer interaction, medical imaging or vehicle navigation. A tracking algorithm in unconstrained environments faces multiple challenges : potential changes in object shape and background, lighting, camera motion, and other adverse acquisition conditions. In this setting, classic methods of background subtraction are inadequate, and more discriminative methods of object detection are needed. Moreover, in generic tracking algorithms, the nature of the object is not known a priori. Thus, off-line learned appearance models for specific types of objects such as faces, or pedestrians can not be used. Further, the recent evolution of powerful machine learning techniques enabled the development of new tracking methods that learn the object appearance in an online manner and adapt to the varying constraints in real time, leading to very robust tracking algorithms that can operate in non-stationary environments to some extent. In this thesis, we start from the observation that different tracking algorithms have different strengths and weaknesses depending on the context. To overcome the varying challenges, we show that combining multiple modalities and tracking algorithms can considerably improve the overall tracking performance in unconstrained environments. More concretely, we first introduced a new tracker selection framework using a spatial and temporal coherence criterion. In this algorithm, multiple independent trackers are combined in a parallel manner, each of them using low-level features based on different complementary visual aspects like colour, texture and shape. By recurrently selecting the most suitable tracker, the overall system can switch rapidly between different tracking algorithms with specific appearance models depending on the changes in the video. In the second contribution, the scene context is introduced to the tracker selection. We designed effective visual features, extracted from the scene context to characterise the different image conditions and variations. At each point in time, a classifier is trained based on these features to predict the tracker that will perform best under the given scene conditions. We further improved this context-based framework and proposed an extended version, where the individual trackers are changed and the classifier training is optimised. Finally, we started exploring one interesting perspective that is the use of a Convolutional Neural Network to automatically learn to extract these scene features directly from the input image and predict the most suitable tracker
Skjong, Espen, and Stian Aas Nundal. "Tracking objects with fixed-wing UAV using model predictive control and machine vision." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25990.
Full textAdeboye, Taiyelolu. "Robot Goalkeeper : A robotic goalkeeper based on machine vision and motor control." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27561.
Full textBarkman, Richard Dan William. "Object Tracking Achieved by Implementing Predictive Methods with Static Object Detectors Trained on the Single Shot Detector Inception V2 Network." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-73313.
Full textI detta arbete undersöks möjligheten att åstadkomma objektefterföljning genom att implementera prediktiva metoder med statiska objektdetektorer. De statiska objektdetektorerna erhålls som modeller tränade på en maskininlärnings-algoritm, det vill säga djupa neurala nätverk. Specifikt så är det en modifierad version av entagningsdetektor-nätverket, så kallat entagningsdetektor inception v2 nätverket, som används för att träna modellerna. Prediktiva metoder inkorporeras sedan för att förbättra modellernas förmåga att kunna finna ett eftersökt objekt. Nämligen används Lagrangiansk mekanik för härleda rörelseekvationer för vissa scenarion i vilka objektet är tänkt att efterföljas. Rörelseekvationerna implementeras genom att låta diskretisera dem och därefter kombinera dem med fyra olika iterationsformler. I kap. 2 behandlas grundläggande teori för övervakad maskininlärning, neurala nätverk, faltande neurala nätverk men också de grundläggande principer för entagningsdetektor-nätverket, närmanden till hyperparameter-optimering och övrig relevant teori. Detta inkluderar härledningar av rörelseekvationerna och de iterationsformler som de skall kombineras med. I kap. 3 så redogörs för den experimentella uppställning som användes vid datainsamling samt hur denna data användes för att producera olika data set. Därefter följer en skildring av hur random search kunde användas för att träna 64 modeller på data av upplösning 300×300 och 32 modeller på data av upplösning 512×512. Vidare utvärderades modellerna med avseende på deras prestanda för varierande kamera-till-objekt avstånd och objekthastighet. I kap. 4 så verifieras det att modellerna har en förmåga att detektera på flera skalor, vilket är ett karaktäristiskt drag för modeller tränade på entagninsdetektor-nätverk. Medan detta gällde för de tränade modellerna oavsett vilken upplösning av data de blivit tränade på, så fanns detekteringsprestandan med avseende på objekthastighet vara betydligt mer konsekvent för modellerna som tränats på data av lägre upplösning. Detta resulterade av att dessa modeller kan arbeta med en högre detekteringsfrekvens. Kap. 4 fortsätter med att de prediktiva metoderna utvärderas, vilket de kunde göras genom att jämföra den resulterande avvikelsen de respektive metoderna innebar då de läts arbeta på ett samplat detektionsmönster, sparat från då en tränad modell körts. I och med denna utvärdering så testades modellerna för olika samplingsgrader. Det visade sig att de bästa iterationsformlerna var de som byggde på färre tidigare datapunkter. Anledningen för detta är att den insamlade data, som testerna utfördes på, innehöll en avsevärd mängd brus. Med tanke på att de implementerade iterationsformlerna inte tar hänsyn till brus, så fick detta avgörande konsekvenser. Det fanns även att alla prediktiva metoder förbättrade objektdetekteringsförmågan till en högre utsträckning för modellerna som var tränade på data av lägre upplösning, vilket följer från att de kan arbeta med en högre detekteringsfrekvens. I kap. 5, argumenteras det, bland annat, för att konceptet att kombinera prediktiva metoder med statiska objektdetektorer för att åstadkomma objektefterföljning är lovande. Det slutleds även att modeller som erhålls från entagningsdetektor-nätverket är lovande kandidater för detta applikationsområde, till följd av deras höga detekteringsfrekvenser och förmåga att kunna detektera på flera skalor. Metoderna som användes för att förutsäga det efterföljda föremålets position fanns vara odugliga på grund av deras oförmåga att kunna hantera brus. Det slutleddes därmed att dessa antingen bör utökas till att kunna hantera brus eller ersättas av lämpligare metoder. Den mest väsentliga slutsats detta arbete presenterar är att lågupplösta entagninsdetektormodeller utgör bättre kandidater än de tränade på data av högre upplösning till följd av den ökade detekteringsfrekvens de erbjuder.
Ozertem, Kemal Arda. "Vision-assisted Object Tracking." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614073/index.pdf.
Full textfor moving object detection, two different background modeling methods are developed. The second part is feature extraction and estimation of optical flow between video frames. As the feature extraction method, a well-known corner detector algorithm is employed and this extraction is applied only at the moving regions in the scene. For the feature points, the optical flow vectors are calculated by using an improved version of Kanade Lucas Tracker. The resulting optical flow field between consecutive frames is used directly in proposed tracking method. In the third part, a particle filter structure is build to provide tracking process. However, the particle filter is improved by adding optical flow data to the state equation as a correction term. In the last part of the study, the performance of the proposed approach is compared against standard implementations particle filter based trackers. Based on the simulation results in this study, it could be argued that insertion of vision-based optical flow estimation to tracking formulation improves the overall performance.
Books on the topic "Machine vision; Object tracking"
IEEE Workshop on Multi-Object Tracking (2001 Vancouver, B.C.). Proceedings: 2001 IEEE workshop on multi-object tracking : July 8, 2001, Vancouver, British Columbia, Canada. Los Alamitos, Calif: IEEE Computer Society, 2001.
Find full textVideo segmentation and its applications. New York: Springer, 2011.
Find full text2001 IEEE Workshop on Multi-Object Tracking: Proceedings. Institute of Electrical & Electronics Enginee, 2001.
Find full textTaylor, Geoffrey, and Lindsay Kleeman. Visual Perception and Robotic Manipulation: 3D Object Recognition, Tracking and Hand-Eye Coordination. Springer, 2014.
Find full textJ, Tarr Michael, and Bülthoff Heinrich H, eds. Object recognition in man, monkey, and machine. Cambridge, Mass: MIT Press, 1998.
Find full textLoui, Alexander Chan Pong. A morphological approach to moving-object recognition with application to machine vision. 1990.
Find full textVisual Perception and Robotic Manipulation: 3D Object Recognition, Tracking and Hand-Eye Coordination (Springer Tracts in Advanced Robotics). Springer, 2006.
Find full textChakraborty, Shouvik, and Kalyani Mali. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities. IGI Global, 2020.
Find full textChakraborty, Shouvik, and Kalyani Mali. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities. IGI Global, 2020.
Find full textChakraborty, Shouvik, and Kalyani Mali. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities. IGI Global, 2020.
Find full textBook chapters on the topic "Machine vision; Object tracking"
Roberti, Flavio, Juan Marcos Toibero, Jorge A. Sarapura, Víctor Andaluz, Ricardo Carelli, and José María Sebastián. "Unified Passivity-Based Visual Control for Moving Object Tracking." In Machine Vision and Navigation, 347–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22587-2_12.
Full textNguyen, Hien Van, Amit Banerjee, Philippe Burlina, Joshua Broadwater, and Rama Chellappa. "Tracking and Identification via Object Reflectance Using a Hyperspectral Video Camera." In Machine Vision Beyond Visible Spectrum, 201–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11568-4_9.
Full textBhattacharya, Subhabrata, Haroon Idrees, Imran Saleemi, Saad Ali, and Mubarak Shah. "Moving Object Detection and Tracking in Forward Looking Infra-Red Aerial Imagery." In Machine Vision Beyond Visible Spectrum, 221–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11568-4_10.
Full textSchlemmer, Matthias J., Georg Biegelbauer, and Markus Vincze. "An Integration Concept for Vision-Based Object Handling: Shape-Capture, Detection and Tracking." In Advances in Machine Vision, Image Processing, and Pattern Analysis, 215–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11821045_23.
Full textSánchez-Nielsen, Elena, and Mario Hernández-Tejera. "Tracking Deformable Objects with Evolving Templates for Real-Time Machine Vision." In Pattern Recognition, Machine Intelligence and Biometrics, 213–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22407-2_9.
Full textVerghese, Gilbert, Karey Lynch Gale, and Charles R. Dyer. "Real-Time, Parallel Motion Tracking of Three Dimensional Objects From Spatiotemporal Sequences." In Parallel Algorithms for Machine Intelligence and Vision, 310–39. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3390-9_9.
Full textBourezak, Rafik, and Guillaume-Alexandre Bilodeau. "Iterative Division and Correlograms for Detection and Tracking of Moving Objects." In Advances in Machine Vision, Image Processing, and Pattern Analysis, 46–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11821045_5.
Full textDavies, E. Roy. "Object Location Using the HOUGH Transform." In Machine Vision Handbook, 773–800. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-84996-169-1_18.
Full textBatchelor, Bruce G. "Appendix F: Object Location and Orientation." In Machine Vision Handbook, 2063–85. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-84996-169-1_47.
Full textZhang, Geng, Zejian Yuan, Nanning Zheng, Xingdong Sheng, and Tie Liu. "Visual Saliency Based Object Tracking." In Computer Vision – ACCV 2009, 193–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12304-7_19.
Full textConference papers on the topic "Machine vision; Object tracking"
Zheng, Feng, Ling Shao, and James Brownjohn. "Learn++ for Robust Object Tracking." In British Machine Vision Conference 2014. British Machine Vision Association, 2014. http://dx.doi.org/10.5244/c.28.28.
Full textYan, Wang, Xiaoye Han, and Vladimir Pavlovic. "Structured Learning for Multiple Object Tracking." In British Machine Vision Conference 2012. British Machine Vision Association, 2012. http://dx.doi.org/10.5244/c.26.48.
Full textMilletari, Fausto, Wadim Kehl, Federico Tombari, Slobodan Ilic, Seyed-Ahmad Ahmadi, and Nassir Navab. "Universal Hough dictionaries for object tracking." In British Machine Vision Conference 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.122.
Full textDonoser, M., and H. Bischof. "Fast Non-Rigid Object Boundary Tracking." In British Machine Vision Conference 2008. British Machine Vision Association, 2008. http://dx.doi.org/10.5244/c.22.1.
Full textMasson, L., F. Jurie, and M. Dhome. "Tracking 3D Object using Flexible Models." In British Machine Vision Conference 2005. British Machine Vision Association, 2005. http://dx.doi.org/10.5244/c.19.37.
Full textGaidon, Adrien, and Eleonora Vig. "Online Domain Adaptation for Multi-Object Tracking." In British Machine Vision Conference 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.3.
Full textPan, Jinshan, Jongwoo Lim, and Ming-Hsuan Yang. "L0-Regularized Object Representation for Visual Tracking." In British Machine Vision Conference 2014. British Machine Vision Association, 2014. http://dx.doi.org/10.5244/c.28.29.
Full textJavan Roshtkhari, Mehrsan, and Martin Levine. "Multiple Object Tracking Using Local Motion Patterns." In British Machine Vision Conference 2014. British Machine Vision Association, 2014. http://dx.doi.org/10.5244/c.28.92.
Full textLuo, Wenhan, and Tae-Kyun Kim. "Generic Object Crowd Tracking by Multi-Task Learning." In British Machine Vision Conference 2013. British Machine Vision Association, 2013. http://dx.doi.org/10.5244/c.27.73.
Full textYe, Mingquan, Hong Chang, and Xilin Chen. "Online Visual Tracking via Coupled Object-Context Dictionary." In British Machine Vision Conference 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.165.
Full textReports on the topic "Machine vision; Object tracking"
Stamler, Zachary. Methods for Object Tracking With Machine Vision. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7507.
Full text