Dissertations / Theses on the topic 'Machine processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Machine processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Morris, Todd D. (Todd Douglas) Carleton University Dissertation Engineering Electrical. ""VLSI triangulation processing for machine vision."." Ottawa, 1987.
Find full textBowman, C. C. "High speed image processing for machine vision." Thesis, Cardiff University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383161.
Full textPark, Yongwon Baskiyar Sanjeev. "Dynamic task scheduling onto heterogeneous machines using Support Vector Machine." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Computer_Science_and_Software_Engineering/Thesis/Park_Yong_50.pdf.
Full textStymne, Sara. "Compound Processing for Phrase-Based Statistical Machine Translation." Licentiate thesis, Linköping : Department of Computer and Information Science, Linköpings universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-51416.
Full textZhang, Hang. "Distributed Support Vector Machine With Graphics Processing Units." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/991.
Full textAlzubi, Omar A. "Designing machine learning ensembles : a game coalition approach." Thesis, Swansea University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678293.
Full textGrundström, Tobias. "Automated Measurements of Liver Fat Using Machine Learning." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151286.
Full textHowlett, Robert J. "A distributed neural network for machine vision." Thesis, University of Brighton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260943.
Full textMuscedere, Roberto. "A multiple in-camera processing system for machine vision." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0023/MQ62258.pdf.
Full textLai, Bing-Chang. "Combining generic programming with vector processing for machine vision." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060221.095043/index.html.
Full textBrowne, R. G. "Transputer multi-processing and other topics in machine vision." Thesis, University of Canterbury. Electrical and Electronic Engineering, 1989. http://hdl.handle.net/10092/6532.
Full textSaxena, Vishal 1979. "Support vector machine and its applications in information processing." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/29404.
Full textIncludes bibliographical references (leaves 59-61).
With increasing amounts of data being generated by businesses and researchers there is a need for fast, accurate and robust algorithms for data analysis. Improvements in databases technology, computing performance and artificial intelligence have contributed to the development of intelligent data analysis. The primary aim of data mining is to discover patterns in the data that lead to better understanding of the data generating process and to useful predictions. One recent technique that has been developed to handle the ever-increasing complexity of hidden patterns is the support vector machine. The support vector machine has been developed as robust tool for classification and regression in noisy, complex domains. Current thesis work is aimed to explore the area of support vector machine to see the interesting applications in data analysis, especially from the point of view of information processing.
by Vishal Saxena.
M.Eng.
Vieira, Fábio Henrique Antunes [UNESP]. "Image processing through machine learning for wood quality classification." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/142813.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-04T19:15:49Z (GMT) No. of bitstreams: 1 vieira_fha_dr_guara.pdf: 4977174 bytes, checksum: f3e115728925e457e12dd4a79c93812a (MD5)
Made available in DSpace on 2016-08-04T19:15:49Z (GMT). No. of bitstreams: 1 vieira_fha_dr_guara.pdf: 4977174 bytes, checksum: f3e115728925e457e12dd4a79c93812a (MD5) Previous issue date: 2016-06-30
A classificação da qualidade da madeira é indicada para indústria de processamento e produção desse material. Essas empresas têm investido em soluções para agregar valor à matéria-prima, com o intuito de melhorar resultados, observando os rumos do mercado. O objetivo deste trabalho foi comparar Redes Neurais Convolutivas, um método de aprendizado profundo, na classificação da qualidade de madeira, com outras técnicas tradicionais de Máquinas de aprendizado, como Máquina de Vetores de Suporte, Árvores de Decisão, Regra dos Vizinhos Mais Próximos e Redes Neurais, em conjunto com Descritores de Textura. Isso foi possível através da verificação do nível de acurácia das experiências com diferentes técnicas, como Aprendizado Profundo e Descritores de Textura no processamento de imagens destes objetos. Foi utilizada uma câmera convencional para capturar as 374 amostras de imagem adotadas no experimento, e a base de dados está disponível para consulta. O processamento das imagens passou por algumas fases, após terem sido obtidas, como pré-processamento, segmentação, análise de recursos e classificação. Os métodos de classificação se deram através de Aprendizado Profundo e por meio de técnicas de Aprendizado de Máquinas tradicionais como Máquina de Vetores de Suporte, Árvores de Decisão, Regra dos Vizinhos Mais Próximos e Redes Neurais juntamente com os Descritores de Textura. Os resultados empíricos para o conjunto de dados das imagens da madeira serrada mostraram que o método com Descritores de Textura, independentemente da estratégia empregada, foi muito competitivo quando comparado com as Redes Neurais Convolutivas para todos os experimentos realizados, e até mesmo superou-as para esta aplicação.
The quality classification of wood is prescribed throughout the wood chain industry, particularly those from the processing and manufacturing fields. Those organizations have invested energy and time trying to increase value of basic items, with the purpose of accomplishing better results, in agreement to the market. The objective of this work was to compare Convolutional Neural Network, a deep learning method, for wood quality classification to other traditional Machine Learning techniques, namely Support Vector Machine (SVM), Decision Trees (DT), K-Nearest Neighbors (KNN), and Neural Networks (NN) associated with Texture Descriptors. Some of the possible options were to assess the predictive performance through the experiments with different techniques, Deep Learning and Texture Descriptors, for processing images of this material type. A camera was used to capture the 374 image samples adopted on the experiment, and their database is available for consultation. The images had some stages of processing after they have been acquired, as pre-processing, segmentation, feature analysis, and classification. The classification methods occurred through Deep Learning, more specifically Convolutional Neural Networks - CNN, and using Texture Descriptors with Support Vector Machine, Decision Trees, K-nearest Neighbors and Neural Network. Empirical results for the image dataset showed that the approach using texture descriptor method, regardless of the strategy employed, is very competitive when compared with CNN for all performed experiments, and even overcome it for this application.
Vieira, Fábio Henrique Antunes. "Image processing through machine learning for wood quality classification /." Guaratinguetá, 2016. http://hdl.handle.net/11449/142813.
Full textBanca: Fábio Minoru Yamaji
Banca: Ana Lúcia Piedade Sodero Martins Pincelli
Banca: André Luís Debiaso Rossi
Banca: Carlos de Oliveira Affonso
Abstract: The quality classification of wood is prescribed throughout the wood chain industry, particularly those from the processing and manufacturing fields. Those organizations have invested energy and time trying to increase value of basic items, with the purpose of accomplishing better results, in agreement to the market. The objective of this work was to compare Convolutional Neural Network, a deep learning method, for wood quality classification to other traditional Machine Learning techniques, namely Support Vector Machine (SVM), Decision Trees (DT), K-Nearest Neighbors (KNN), and Neural Networks (NN) associated with Texture Descriptors. Some of the possible options were to assess the predictive performance through the experiments with different techniques, Deep Learning and Texture Descriptors, for processing images of this material type. A camera was used to capture the 374 image samples adopted on the experiment, and their database is available for consultation. The images had some stages of processing after they have been acquired, as pre-processing, segmentation, feature analysis, and classification. The classification methods occurred through Deep Learning, more specifically Convolutional Neural Networks - CNN, and using Texture Descriptors with Support Vector Machine, Decision Trees, K-nearest Neighbors and Neural Network. Empirical results for the image dataset showed that the approach using texture descriptor method, regardless of the strategy employed, is very competi... (Complete abstract click electronic access below)
Resumo: A classificação da qualidade da madeira é indicada para indústria de processamento e produção desse material. Essas empresas têm investido em soluções para agregar valor à matéria-prima, com o intuito de melhorar resultados, observando os rumos do mercado. O objetivo deste trabalho foi comparar Redes Neurais Convolutivas, um método de aprendizado profundo, na classificação da qualidade de madeira, com outras técnicas tradicionais de Máquinas de aprendizado, como Máquina de Vetores de Suporte, Árvores de Decisão, Regra dos Vizinhos Mais Próximos e Redes Neurais, em conjunto com Descritores de Textura. Isso foi possível através da verificação do nível de acurácia das experiências com diferentes técnicas, como Aprendizado Profundo e Descritores de Textura no processamento de imagens destes objetos. Foi utilizada uma câmera convencional para capturar as 374 amostras de imagem adotadas no experimento, e a base de dados está disponível para consulta. O processamento das imagens passou por algumas fases, após terem sido obtidas, como pré-processamento, segmentação, análise de recursos e classificação. Os métodos de classificação se deram através de Aprendizado Profundo e por meio de técnicas de Aprendizado de Máquinas tradicionais como Máquina de Vetores de Suporte, Árvores de Decisão, Regra dos Vizinhos Mais Próximos e Redes Neurais juntamente com os Descritores de Textura. Os resultados empíricos para o conjunto de dados das imagens da madeira serrada mostraram que o método com De... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
SORIANO, PINTER JAUME. "Machine learning-based image processing for human-robot collaboration." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278899.
Full textMänniska-robot samarbete, som ett nytt paradigm inom tillverkningsindustrin, har redan blivit ett omtalat ämne inom tillverkningsvetenskapen, produktforskningen, intelligent robotik och datavetenskapen. På grund av det senaste decenniets ökning av "deep learning" teknologier kan avancerade information-processerings teknologier bringa nya möjligheter för människarobot samarbete. Under tiden har även maskininlärnings-baserad bildklassificering med "convolutional neural network" blivit ett kraftfullt verktyg för att hantera problem så som måligenkänning och lokalisering. Dessa typer av teknologier har potential att implementeras nom robotiserad tillverkning och människa-robot samarbete. En utmaning är att implementera väldesignade "convolutional neural networks" kopplat till ett robot system som kan utföra arbete i samarbete med människan. Noggranhet och robusthet behöver också avvägas i utvecklingsarbetet. Detta examensarbete kommer att ta itu med denna utmaning. Detta examensarbete försöker att implementera en lösning baserad på maskininlärnings-metoder för bildigenkänning som tillåter oss att, med hjälp av en billig bild lösning (RGB enkel kamera), detektera och lokalisera tillverkningskomponenter att plocka upp och slutföra en montering, vilket hjälper den mänskliga medhjälparen, med en industriell robot. Detta förenklar också IT-uppgifterna för att köra den.
Goraine, Habib. "Machine recognition of Arabic text." Thesis, University of Reading, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278135.
Full textKing, Tony Richard. "Parallel image manipulation machine architecture." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257001.
Full textWang, Wei. "Automatic Chinese calligraphic font generation with machine learning technology." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950605.
Full textBecirovic, Ema. "On Massive MIMO for Massive Machine-Type Communications." Licentiate thesis, Linköpings universitet, Kommunikationssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162586.
Full textWalters, Thomas C. "Auditory-based processing of communication sounds." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/240577.
Full textChow, K. W. "Multi-processor architecture for machine vision." Thesis, Cardiff University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358531.
Full textTan, Tele Seng Chu. "Colour texture analysis in machine vision." Thesis, University of Surrey, 1993. http://epubs.surrey.ac.uk/844403/.
Full textFothergill, John Simon. "The coaching-machine learning interface : indoor rowing." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648459.
Full textMairal, Julien. "Sparse coding for machine learning, image processing and computer vision." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00595312.
Full textMarshall, Simon. "The generation of machine tool cutter paths utilising parallel processing." Thesis, University of Hull, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287912.
Full textDiethe, T. R. "Sparse machine learning methods with applications in multivariate signal processing." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/20450/.
Full textTang, Qiao. "Knowledge management using machine learning, natural language processing and ontology." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56067/.
Full textJijie, Zhu. "Finite state machine with applications to digital signal processing systems." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293028.
Full textDing, Sihao. "Multi-Perspective Image and Video Processing for Human-Machine Interaction." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488462115943949.
Full textRustogi, Kabir. "Machine scheduling with changing processing times and rate-modifying activities." Thesis, University of Greenwich, 2013. http://gala.gre.ac.uk/11992/.
Full textPerumalla, Calvin A. "Machine Learning and Adaptive Signal Processing Methods for Electrocardiography Applications." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6926.
Full textMobus, George E. (George Edward). "A Multi-Time Scale Learning Mechanism for Neuromimic Processing." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc278467/.
Full textZhang, Xiaowei. "Pedestrian flow measurement using image processing techniques." Thesis, Northumbria University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367418.
Full textKing, Stephen. "A machine vision system for texture segmentation." Thesis, Brunel University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310081.
Full textAlorwu, A. (Andy). "Android-based customizable media crowdsourcing toolkit for machine vision research." Master's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201812063247.
Full textAdams, Andrew. "Tools and techniques for machine-assisted meta-theory." Thesis, University of St Andrews, 1997. http://hdl.handle.net/10023/13382.
Full textHu, Ji, Dirk Cordel, and Christoph Meinel. "A virtual machine architecture for creating IT-security laboratories." Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2009/3307/.
Full textLyons, Laura Christine. "An investigation of systematic errors in machine vision hardware." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/16759.
Full textDöring, Kersten [Verfasser], and Stefan [Akademischer Betreuer] Günther. "Processing information about biomolecules with text mining and machine learning approaches." Freiburg : Universität, 2016. http://d-nb.info/111945297X/34.
Full textLiaghat, Zeinab. "Quality-efficiency trade-offs in machine learning applied to text processing." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/402575.
Full textAvui en dia, la quantitat de documents digitals disponibles està creixent ràpidament, expandint- se a un ritme considerable i procedint de diverses fonts. Les fonts d’informació no estructurada i semiestructurada inclouen la World Wide Web, articles de notícies, bases de dades biològiques, correus electrònics, biblioteques digitals, repositoris electrònics governamentals, , sales de xat, forums en línia, blogs i mitjans socials com Facebook, Instagram, LinkedIn, Pinterest, Twitter, YouTube i molts d’altres. Extreure’n informació d’aquests recursos i trobar informació útil d’aquestes col.leccions s’ha convertit en un desafiament que fa que l’organització d’aquesta enorme quantitat de dades esdevingui una necessitat. La mineria de dades, l’aprenentatge automàtic i el processament del llenguatge natural són tècniques poderoses que poden utilitzar-se conjuntament per fer front a aquest gran desafiament. Segons la tasca o el problema en qüestió existeixen molts emfo- caments diferents que es poden utilitzar. Els mètodes que s’estan implementant s’optimitzen continuament, però aquests mètodes d’aprenentatge automàtic supervisats han estat provats i comparats amb grans dades d’entrenament. La pregunta és : Què passa amb la qualitat dels mètodes si incrementem les dades de 100 MB a 1 GB? Més encara: Les millores en la qualitat valen la pena quan la taxa de processament de les dades minva? Podem canviar qualitat per eficiència, tot recuperant la perdua de qualitat quan processem més dades? Aquesta tesi és una primera aproximació per resoldre aquestes preguntes de forma gene- ral per a tasques de processament de text, ja que no hi ha hagut suficient investigació per a comparar aquests mètodes considerant el balanç entre el tamany de les dades, la qualitat dels resultats i el temps de processament. Per tant, proposem un marc per analitzar aquest balanç i l’apliquem a tres problemes importants de processament de text: Reconeixement d’Entitats Anomenades, Anàlisi de Sentiments i Classificació de Documents. Aquests problemes tam- bé han estat seleccionats perquè tenen nivells diferents de granularitat: paraules, opinions i documents complerts. Per a cada problema seleccionem diferents algoritmes d’aprenentatge automàtic i avaluem el balanç entre aquestes variables per als diferents algoritmes en grans conjunts de dades públiques ( notícies, opinions, patents). Utilitzem subconjunts de diferents tamanys entre 50 MB i alguns GB per a explorar aquests balanç. Per acabar, com havíem suposat, no perquè un algoritme és eficient en poques dades serà eficient en grans quantitats de dades. Per als dos últims problemes considerem algoritmes similars i també dos conjunts diferents de dades i tècniques d’avaluació per a estudiar l’impacte d’aquests dos paràmetres en els resultats. Mostrem que els resultats no canvien significativament amb aquests canvis.
Hoy en día, la cantidad de documentos digitales disponibles está creciendo rápidamente, ex- pandiéndose a un ritmo considerable y procediendo de una variedad de fuentes. Estas fuentes de información no estructurada y semi estructurada incluyen la World Wide Web, artículos de noticias, bases de datos biológicos, correos electrónicos, bibliotecas digitales, repositorios electrónicos gubernamentales, salas de chat, foros en línea, blogs y medios sociales como Fa- cebook, Instagram, LinkedIn, Pinterest, Twitter, YouTube, además de muchos otros. Extraer información de estos recursos y encontrar información útil de tales colecciones se ha convertido en un desafío que hace que la organización de esa enorme cantidad de datos sea una necesidad. La minería de datos, el aprendizaje automático y el procesamiento del lenguaje natural son técnicas poderosas que pueden utilizarse conjuntamente para hacer frente a este gran desafío. Dependiendo de la tarea o el problema en cuestión, hay muchos enfoques dife- rentes que se pueden utilizar. Los métodos que se están implementando se están optimizando continuamente, pero estos métodos de aprendizaje automático supervisados han sido probados y comparados con datos de entrenamiento grandes. La pregunta es ¿Qué pasa con la calidad de los métodos si incrementamos los datos de 100 MB a 1GB? Más aún, ¿las mejoras en la cali- dad valen la pena cuando la tasa de procesamiento de los datos disminuye? ¿Podemos cambiar calidad por eficiencia, recuperando la perdida de calidad cuando procesamos más datos? Esta tesis es una primera aproximación para resolver estas preguntas de forma general para tareas de procesamiento de texto, ya que no ha habido investigación suficiente para comparar estos métodos considerando el balance entre el tamaño de los datos, la calidad de los resultados y el tiempo de procesamiento. Por lo tanto, proponemos un marco para analizar este balance y lo aplicamos a tres importantes problemas de procesamiento de texto: Reconocimiento de En- tidades Nombradas, Análisis de Sentimientos y Clasificación de Documentos. Estos problemas fueron seleccionados también porque tienen distintos niveles de granularidad: palabras, opinio- nes y documentos completos. Para cada problema seleccionamos distintos algoritmos de apren- dizaje automático y evaluamos el balance entre estas variables para los distintos algoritmos en grandes conjuntos de datos públicos (noticias, opiniones, patentes). Usamos subconjuntos de distinto tamaño entre 50 MB y varios GB para explorar este balance. Para concluir, como ha- bíamos supuesto, no porque un algoritmo es eficiente en pocos datos será eficiente en grandes cantidades de datos. Para los dos últimos problemas consideramos algoritmos similares y tam- bién dos conjuntos distintos de datos y técnicas de evaluación, para estudiar el impacto de estos dos parámetros en los resultados. Mostramos que los resultados no cambian significativamente con estos cambios.
Styś, Małgorzata Elżbieta. "A processing model of information structure in machine translation processor text." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624970.
Full text吳建雄 and Jianxiong Wu. "A parallel distributed processing system for machine recognition of speech signals." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31232887.
Full textWu, Jianxiong. "A parallel distributed processing system for machine recognition of speech signals /." [Hong Kong : University of Hong Kong], 1991. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13068568.
Full textForsyth, Alexander William. "Improving clinical decision making with natural language processing and machine learning." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112847.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 49-53).
This thesis focused on two tasks of applying natural language processing (NLP) and machine learning to electronic health records (EHRs) to improve clinical decision making. The first task was to predict cardiac resynchronization therapy (CRT) outcomes with better precision than the current physician guidelines for recommending the procedure. We combined NLP features from free-text physician notes with structured data to train a supervised classifier to predict CRT outcomes. While our results gave a slight improvement over the current baseline, we were not able to predict CRT outcome with both high precision and high recall. These results limit the clinical applicability of our model, and reinforce previous work, which also could not find accurate predictors of CRT response. The second task in this thesis was to extract breast cancer patient symptoms during chemotherapy from free-text physician notes. We manually annotated about 10,000 sentences, and trained a conditional random field (CRF) model to predict whether a word indicated a symptom (positive label), specifically indicated the absence of a symptom (negative label), or was neutral. Our final model achieved 0.66, 1.00, and 0.77 F1 scores for predicting positive, neutral, and negative labels respectively. While the F1 scores for positive and negative labels are not extremely high, with the current performance, our model could be applied, for example, to gather better statistics about what symptoms breast cancer patients experience during chemotherapy and at what time points during treatment they experience these symptoms.
by Alexander William Forsyth.
M. Eng.
Trachi, Youness. "On induction machine faults detection using advanced parametric signal processing techniques." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0103/document.
Full textThis Ph.D. thesis aims to develop reliable and cost-effective condition monitoring and faults detection architectures for induction machines. These architectures are mainly based on advanced parametric signal processing techniques. To analyze and detect faults, a parametric stator current model under stationary conditions has been considered. It is assumed to be multiple sinusoids with unknown parameters in noise. This model has been estimated using parametric techniques such as subspace spectral estimators and maximum likelihood estimator. A fault severity criterion based on the estimation of the stator current frequency component amplitudes has also been proposed to determine the induction machine failure level. A novel faults detector based on hypothesis testing has been also proposed. This detector is mainly based on the generalized likelihood ratio test detector with unknown signal and noise parameters. The proposed parametric techniques have been evaluated using experimental stator current signals issued from induction machines under two considered faults: bearing and broken rotor bars faults.Experimental results show the effectiveness and the detection ability of the proposed parametric techniques
Hyberg, Martin. "Software Issue Time Estimation With Natural Language Processing and Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295202.
Full textTidsuppskattning för programvaruärenden är en avgörande del för planering av projekt. Utvecklare och experter har i många årtionden försökt uppskatta tiden ett ärende kommer ta så exakt som möjligt. Metoderna som används idag är ofta tidskrävande och komplexa. Denna avhandling undersöker om tidsuppskattningsprocessen kan göras med hjälp av språkteknologi och maskininlärning. De flesta programvaruärenden har en fritextbeskrivning av vad som är fel eller behöver läggas till. Tre olika ordinbäddningar användes för att representera fritextbeskrivningen, bag-of-word med tf-idf-viktning, word2Vec och fastText. De olika ordinbäddningarna matades sedan in i två typer av maskininlärningsmetoder, klassificering och regression. Klassificeringen var binär och frågan kan formuleras som tar ärendet mer än tre timmar?. Målet med regressionsproblemet var att förutsäga ett faktiskt värde för den tid som frågan skulle ta att slutföra. Klassificeringsmodellens prestanda mättes med en F1-poäng och regressionsmodellen mättes med en R2-poäng. Den bästa F1-poängen för klassificering var 0.748 och uppnåddes med en word2Vec-ordinbäddning och en SVM-klassificeringsmodell. Den bästa poängen för regressionsanalysen uppnåddes med en bag-of-words-inbäddning, som uppnådde en R2-poäng på 0.380. Vidare undersökning av resultaten och en jämförelse av faktiskta tidsestimat som gjorts av företaget visar att människor bara är lite bättre än modellerna givet klassificeringsfrågan beskriven ovan. F1-poängen för de anställda var 0.792, bara 0.044 bättre än det bästa F1-poängen för modellerna. Slutsatsen för denna avhandling är att modellerna inte är tillräckligt bra för att användas i en professionell miljö. En F1-poäng på 0.748 kan användas i andra situationer, men klassificeringsfrågan i detta problem är för bred för att användas för ett riktigt projekt. Resultatet för regressionen är också för lågt för att vara till någon värdefull användning.
Hedberg, Niclas. "Automated invoice processing with machine learning : Benefits, risks and technical feasibility." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279617.
Full textNär en organisation tar emot fakturor anges konton och kostnadsställen relaterade till inköpen. Detta examensarbete undersökte automatiserat beslutsstöd med maskininlärning som ger förslag på vilka konton och kostnadsställe som kan användas för fakturor. Syftet var att identifiera fördelarna och riskerna med att använda automatisering med maskininlärning för fakturahantering och utvärdera teknikens prestanda. Resultaten visade att maskininlärningsbaserat beslutsstöd för fakturabehandling uppfattas vara fördelaktigt genom att spara tid, minska mentala ansträngning, skapa mer sammanhängande bokföring, upptäcka fel, och möjliggöra högre automatiseringsnivåer. Men det finns också risker relaterade till implementering av automatisering med maskininlärning. Det är en stor variation gällande hur konton och kostnadsställen används i olika organisationer och en ojämn prestanda kan förväntas på grund av att vissa fakturor är mer komplexa att bokföra än andra. Maskininlärningsexperiment genomfördes som indikerade att korrektheten i att föreslå rätt konto var 73–76%. För kostnadsställe var korrektheten 50–62%. En metod för att filtrera maskininlärnings-förslagen utvecklades i syfte att höja korrektheten för automatiseringen. Med denna metod uppnådde den begränsade mängden förslag som passerade filtret en korrekthet upp till 100%.
Zhang, Yue. "Sparsity in Image Processing and Machine Learning: Modeling, Computation and Theory." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1523017795312546.
Full textJi, Soo-Yeon. "COMPUTER-AIDED TRAUMA DECISION MAKING USING MACHINE LEARNING AND SIGNAL PROCESSING." VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/1628.
Full textEnshaeifar, Shirin. "Eigen-based machine learning techniques for complex and hyper-complex processing." Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/811040/.
Full text