Academic literature on the topic 'Machine learning tools'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine learning tools.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine learning tools"
Pagadipala srikanth, Pulimamidi sai teja, Borigam Lakshmi prasad, and Veduruvada pavan kalyan. "A comprehensive review of machine learning techniques in computer numerical controlled machines." International Journal of Science and Research Archive 9, no. 1 (June 30, 2023): 627–37. http://dx.doi.org/10.30574/ijsra.2023.9.1.0491.
Full textHussein, Eslam A., Christopher Thron, Mehrdad Ghaziasgar, Antoine Bagula, and Mattia Vaccari. "Groundwater Prediction Using Machine-Learning Tools." Algorithms 13, no. 11 (November 17, 2020): 300. http://dx.doi.org/10.3390/a13110300.
Full textBosetti, Paolo, Matteo Ragni, and Matteo Leoni. "Modern machine-learning tools for crystallography." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C562. http://dx.doi.org/10.1107/s2053273317090118.
Full textPadarian, José, Budiman Minasny, and Alex B. McBratney. "Machine learning and soil sciences: a review aided by machine learning tools." SOIL 6, no. 1 (February 6, 2020): 35–52. http://dx.doi.org/10.5194/soil-6-35-2020.
Full textMahardika, Rizka. "THE USE OF TRANSLATION TOOL IN EFL LEARNING: DO MACHINE TRANSLATION GIVE POSITIVE IMPACT IN LANGUAGE LEARNING?" Pedagogy : Journal of English Language Teaching 5, no. 1 (July 30, 2017): 49. http://dx.doi.org/10.32332/pedagogy.v5i1.755.
Full textO’Gorman, Eoin J. "Machine learning ecological networks." Science 377, no. 6609 (August 26, 2022): 918–19. http://dx.doi.org/10.1126/science.add7563.
Full textNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization." Biotechnology and Bioprocessing 2, no. 9 (November 2, 2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Full textSukhoparov, M. E., K. I. Salakhutdinova, and I. S. Lebedev. "Software Identification by Standard Machine Learning Tools." Automatic Control and Computer Sciences 55, no. 8 (December 2021): 1175–79. http://dx.doi.org/10.3103/s0146411621080459.
Full textGleyzer, S. V., L. Moneta, and Omar A. Zapata. "Development of Machine Learning Tools in ROOT." Journal of Physics: Conference Series 762 (October 2016): 012043. http://dx.doi.org/10.1088/1742-6596/762/1/012043.
Full textYousefi, Jamileh, and Andrew Hamilton-Wright. "Characterizing EMG data using machine-learning tools." Computers in Biology and Medicine 51 (August 2014): 1–13. http://dx.doi.org/10.1016/j.compbiomed.2014.04.018.
Full textDissertations / Theses on the topic "Machine learning tools"
Kanwar, John. "Smart cropping tools with help of machine learning." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74827.
Full textMaskinlärning har funnits en lång tid. Deras jobb varierar från flera olika ämnen. Allting från självkörande bilar till data mining. När en person tar en bild med en mobiltelefon händer det lätt att bilden är lite sned. Det händer också att en tar spontana bilder med sin mobil, vilket kan leda till att det kommer med något i kanten av bilden som inte bör vara där. Det här examensarbetet kombinerar maskinlärning med fotoredigeringsverktyg. Det kommer att utforska möjligheterna hur maskinlärning kan användas för att automatiskt beskära bilder estetsikt tilltalande samt hur maskinlärning kan användas för att skapa ett porträttbeskärningsverktyg. Det kommer även att gå igenom hur en räta-till-funktion kan bli implementerad med hjälp av maskinlärning. Till sist kommer det att jämföra dessa verktyg med andra programs automatiska beskärningsverktyg.
Nordin, Alexander Friedrich. "End to end machine learning workflow using automation tools." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119776.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 79-80).
We have developed an open source library named Trane and integrated it with two open source libraries to build an end-to-end machine learning workflow that can facilitate rapid development of machine learning models. The three components of this workflow are Trane, Featuretools and ATM. Trane enumerates tens of prediction problems relevant to any dataset using the meta information about the data. Furthermore, Trane generates training examples required for training machine learning models. Featuretools is an open-source software for automatically generating features from a dataset. Auto Tune Models (ATM), an open source library, performs a high throughput search over modeling options to find the best modeling technique for a problem. We show the capability of these three tools and highlight the open-source development of Trane.
by Alexander Friedrich Nordin.
M. Eng.
Jalali, Mana. "Voltage Regulation of Smart Grids using Machine Learning Tools." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/95962.
Full textWith advent of renewable energies into the power systems, innovative and automatic monitoring and control techniques are required. More specifically, voltage regulation for distribution grids with solar generation is a can be a challenging task. Moreover, due to frequency and intensity of the voltage changes, traditional utility-owned voltage regulation equipment are not useful in long term. On the other hand, smart inverters installed with solar panels can be used for regulating the voltage. Smart inverters can be programmed to inject or absorb reactive power which directly influences the voltage. Utility can monitor, control and sync the inverters across the grid to maintain the voltage within the desired limits. Machine learning and optimization techniques can be applied for automation of voltage regulation in smart grids using the smart inverters installed with solar panels. In this work, voltage regulation is addressed by reactive power control.
Viswanathan, Srinidhi. "ModelDB : tools for machine learning model management and prediction storage." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113540.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 99-100).
Building a machine learning model is often an iterative process. Data scientists train hundreds of models before finding a model that meets acceptable criteria. But tracking these models and remembering the insights obtained from them is an arduous task. In this thesis, we present two main systems for facilitating better tracking, analysis, and querying of scikit-learn machine learning models. First, we introduce our scikit-learn client for ModelDB, a novel end-to-end system for managing machine learning models. The client allows data scientists to easily track diverse scikit-learn workflows with minimal changes to their code. Then, we describe our extension to ModelDB, PredictionStore. While the ModelDB client enables users to track the different models they have run, PredictionStore creates a prediction matrix to tackle the remaining piece in the puzzle: facilitating better exploration and analysis of model performance. We implement a query API to assist in analyzing predictions and answering nuanced questions about models. We also implement a variety of algorithms to recommend particular models to ensemble utilizing the prediction matrix. We evaluate ModelDB and PredictionStore on different datasets and determine ModelDB successfully tracks scikit-learn models, and most complex model queries can be executed in a matter of seconds using our query API. In addition, the workflows demonstrate significant improvement in accuracy using the ensemble algorithms. The overall goal of this research is to provide a flexible framework for training scikit-learn models, storing their predictions/ models, and efficiently exploring and analyzing the results.
by Srinidhi Viswanathan.
M. Eng.
Borodavkina, Lyudmila 1977. "Investigation of machine learning tools for document clustering and classification." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8932.
Full textIncludes bibliographical references (leaves 57-59).
Data clustering is a problem of discovering the underlying data structure without any prior information about the data. The focus of this thesis is to evaluate a few of the modern clustering algorithms in order to determine their performance in adverse conditions. Synthetic Data Generation software is presented as a useful tool both for generating test data and for investigating results of the data clustering. Several theoretical models and their behavior are discussed, and, as the result of analysis of a large number of quantitative tests, we come up with a set of heuristics that describe the quality of clustering output in different adverse conditions.
by Lyudmila Borodavkina.
M.Eng.
Song, Qi. "Developing machine learning tools to understand transcriptional regulation in plants." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93512.
Full textDoctor of Philosophy
Abiotic stresses constitute a major category of stresses that negatively impact plant growth and development. It is important to understand how plants cope with environmental stresses and reprogram gene responses which in turn confers stress tolerance to plants. Genomics technology has been used in past decade to generate gene expression data under different abiotic stresses for the model plant, Arabidopsis. Recent new genomic technologies, such as DAP-seq, have generated large scale regulatory maps that provide information regarding which gene has the potential to regulate other genes in the genome. However, this technology does not provide context specific interactions. It is unknown which transcription factor can regulate which gene under a specific abiotic stress condition. To address this challenge, several computational tools were developed to identify regulatory interactions and co-regulating genes for stress response. In addition, using single cell RNA-seq data generated from the model plant organism Arabidopsis, preliminary analysis was performed to build model that classifies Arabidopsis root cell types. This analysis is the first step towards the ultimate goal of constructing cell-typespecific regulatory network for Arabidopsis, which is important for improving current understanding of stress response in plants.
Nagler, Dylan Jeremy. "SCHUBOT: Machine Learning Tools for the Automated Analysis of Schubert’s Lieder." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12705172.
Full textParikh, Neena (Neena S. ). "Interactive tools for fantasy football analytics and predictions using machine learning." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100687.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 83-84).
The focus of this project is multifaceted: we aim to construct robust predictive models to project the performance of individual football players, and we plan to integrate these projections into a web-based application for in-depth fantasy football analytics. Most existing statistical tools for the NFL are limited to the use of macro-level data; this research looks to explore statistics at a finer granularity. We explore various machine learning techniques to develop predictive models for different player positions including quarterbacks, running backs, wide receivers, tight ends, and kickers. We also develop an interactive interface that will assist fantasy football participants in making informed decisions when managing their fantasy teams. We hope that this research will not only result in a well-received and widely used application, but also help pave the way for a transformation in the field of football analytics.
by Neena Parikh.
M. Eng.
Arango, Argoty Gustavo Alonso. "Computational Tools for Annotating Antibiotic Resistance in Metagenomic Data." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/88987.
Full textDoctor of Philosophy
Antimicrobial resistance (AMR) is one of the biggest threats to human public health. It has been estimated that the number of deaths caused by AMR will surpass the ones caused by cancer on 2050. The seriousness of these projections requires urgent actions to understand and control the spread of AMR. In the last few years, metagenomics has stand out as a reliable tool for the analysis of the microbial diversity and the AMR. By the use of next generation sequencing, metagenomic studies can generate millions of short sequencing reads that are processed by computational tools. However, with the rapid adoption of metagenomics, a large amount of data has been generated. This situation requires the development of computational tools and pipelines to manage the data scalability, accessibility, and performance. In this thesis, several strategies varying from command line, web-based platforms to machine learning have been developed to address these computational challenges. In particular, by the development of computational pipelines to process metagenomics data in the cloud and distributed systems, the development of machine learning and deep learning tools to ease the computational cost of detecting antibiotic resistance genes in metagenomic data, and the integration of crowdsourcing as a way to curate and validate antibiotic resistance genes.
Schildt, Alexandra, and Jenny Luo. "Tools and Methods for Companies to Build Transparent and Fair Machine Learning Systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279659.
Full textAI har snabbt vuxit från att vara ett vagt koncept till en ny teknik som många företag vill eller är i färd med att implementera. Forskare och organisationer är överens om att AI och utvecklingen inom maskininlärning har enorma potentiella fördelar. Samtidigt finns det en ökande oro för att utformningen och implementeringen av AI-system inte tar de etiska riskerna i beaktning. Detta har triggat en debatt kring vilka principer och värderingar som bör vägleda AI i dess utveckling och användning. Det saknas enighet kring vilka värderingar och principer som bör vägleda AI-utvecklingen, men också kring vilka praktiska verktyg som skall användas för att implementera dessa principer i praktiken. Trots att forskare, organisationer och myndigheter har föreslagit verktyg och strategier för att arbeta med etiskt AI inom organisationer, saknas ett helhetsperspektiv som binder samman de verktyg och strategier som föreslås i etiska, tekniska och organisatoriska diskurser. Rapporten syftar till överbrygga detta gap med följande syfte: att utforska och presentera olika verktyg och metoder som företag och organisationer bör ha för att bygga maskininlärningsapplikationer på ett rättvist och transparent sätt. Studien är av kvalitativ karaktär och datainsamlingen genomfördes genom en litteraturstudie och intervjuer med ämnesexperter från forskning och näringsliv. I våra resultat presenteras ett antal verktyg och metoder för att öka rättvisa och transparens i maskininlärningssystem. Våra resultat visar också att företag bör arbeta med en kombination av verktyg och metoder, både utanför och inuti utvecklingsprocessen men också i olika stadier i utvecklingsprocessen. Verktyg utanför utvecklingsprocessen så som etiska riktlinjer, utsedda roller, workshops och utbildningar har positiva effekter på engagemang och kunskap samtidigt som de ger värdefulla möjligheter till förbättringar. Dessutom indikerar resultaten att det är kritiskt att principer på hög nivå översätts till mätbara kravspecifikationer. Vi föreslår ett antal verktyg i pre-model, in-model och post-model som företag och organisationer kan implementera för att öka rättvisa och transparens i sina maskininlärningssystem.
Books on the topic "Machine learning tools"
Khosrowpour, Mehdi, and Information Resources Management Association. Machine learning: Concepts, methodologies, tools and applications. Hershey, PA: Information Science Reference, 2012.
Find full textLearning computer numerical control. Albany, NY: Delmar Publishers, 1992.
Find full textCost-sensitive machine learning. Boca Raton, FL: CRC Press, 2012.
Find full textEibe, Frank, and Hall Mark A, eds. Data mining: Practical machine learning tools and techniques. 3rd ed. Burlington, MA: Morgan Kaufmann, 2011.
Find full textCastiello, Maria Elena. Computational and Machine Learning Tools for Archaeological Site Modeling. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88567-0.
Full textMachine learning: A probabilistic perspective. Cambridge, MA: MIT Press, 2012.
Find full textPardalos, Panos M., Stamatina Th Rassia, and Arsenios Tsokas, eds. Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84459-2.
Full textWitten, I. H. Data mining: Practical machine learning tools and techniques with Java implementations. San Francisco, Calif: Morgan Kaufmann, 2000.
Find full textSrinivasa, K. G., G. M. Siddesh, and S. R. Manisekhar, eds. Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2445-5.
Full textNational Institute of Standards and Technology (U.S.), ed. Manufacturing technology learning modules: Sharing resources for school outreach. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textBook chapters on the topic "Machine learning tools"
Geetha, T. V., and S. Sendhilkumar. "Machine Learning: Tools and Software." In Machine Learning, 103–25. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003290100-5.
Full textSekar, Maris. "Storytelling Tools." In Machine Learning for Auditors, 173–79. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8051-5_18.
Full textAlvo, Mayer. "Tools for Machine Learning." In Statistical Inference and Machine Learning for Big Data, 277–327. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06784-6_11.
Full textVasudevan, Shriram K., Nitin Vamsi Dantu, Sini Raj Pulari, and T. S. Murugesh. "Tools and Pre-requisites." In Machine Learning with oneAPI, 56–75. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003393122-5.
Full textVasudevan, Shriram K., Nitin Vamsi Dantu, Sini Raj Pulari, and T. S. Murugesh. "More Intel Tools for Enhanced Development Experience." In Machine Learning with oneAPI, 181–92. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003393122-12.
Full textScutari, Marco, and Mauro Malvestio. "Tools for Developing Pipelines." In The Pragmatic Programmer for Machine Learning, 247–62. New York: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9780429292835-10.
Full textLi, Xuekui, Lei Chen, Yi Shi, and Ping Cui. "Learning Parameter Analysis for Machine Reading Comprehension." In Simulation Tools and Techniques, 485–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72792-5_39.
Full textEtaati, Leila. "Overview of Microsoft Machine Learning Tools." In Machine Learning with Microsoft Technologies, 355–58. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-3658-1_20.
Full textSmith, Einar. "Scientific Machine Learning with PyTorch." In Introduction to the Tools of Scientific Computing, 359–410. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16972-4_16.
Full textEtaati, Leila. "Deep Learning Tools with Cognitive Toolkit (CNTK)." In Machine Learning with Microsoft Technologies, 287–302. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-3658-1_17.
Full textConference papers on the topic "Machine learning tools"
Raboudi, Khaoula, and Abdelkader Ben Saci. "Machine learning for optimized buildings morphosis." In DTUC '20: Digital Tools & Uses Congress. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3423603.3424057.
Full textKaytan, Mustafa, and Ibrahim Berkan Aydilek. "A review on machine learning tools." In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 2017. http://dx.doi.org/10.1109/idap.2017.8090257.
Full textOwen, Steven. "Working with CUBIT's Machine Learning Tools." In Proposed for presentation at the Cubit 200 virtual class held October 19-20, 2021 in online, . US DOE, 2021. http://dx.doi.org/10.2172/1892152.
Full textAgarwal, Namita, and Saikat Das. "Interpretable Machine Learning Tools: A Survey." In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2020. http://dx.doi.org/10.1109/ssci47803.2020.9308260.
Full textAbid, Saad Bin, Vishal Mahajan, and Levi Lucio. "Machine Learning for Learnability of MDD tools." In The 31st International Conference on Software Engineering and Knowledge Engineering. KSI Research Inc. and Knowledge Systems Institute Graduate School, 2019. http://dx.doi.org/10.18293/seke2019-050.
Full textTAGLIAFERRI, ROBERTO, FRANCESCO IORIO, FRANCESCO NAPOLITANO, GIANCARLO RAICONI, and GENNARO MIELE. "INTERACTIVE MACHINE LEARNING TOOLS FOR DATA ANALYSIS." In Proceedings of the 6th International Workshop on Data Analysis in Astronomy “Livio Scarsi”. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812779458_0030.
Full textRamírez-Amaro, K., and J. C. Chimal-Eguía. "Machine Learning Tools to Time Series Forecasting." In 2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session MICAI. IEEE, 2007. http://dx.doi.org/10.1109/micai.2007.42.
Full textObulesu, O., M. Mahendra, and M. ThrilokReddy. "Machine Learning Techniques and Tools: A Survey." In 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2018. http://dx.doi.org/10.1109/icirca.2018.8597302.
Full textSworna, Zarrin Tasnim, Anjitha Sreekumar, Chadni Islam, and Muhammad Ali Babar. "Security Tools’ API Recommendation Using Machine Learning." In 18th International Conference on Evaluation of Novel Approaches to Software Engineering. SCITEPRESS - Science and Technology Publications, 2023. http://dx.doi.org/10.5220/0011708300003464.
Full textKlumbytė, Goda, Claude Draude, and Alex Taylor. "Critical Tools for Machine Learning: Situating, Figuring, Diffracting, Fabulating Machine Learning Systems Design." In CHItaly '21: 14th Biannual Conference of the Italian SIGCHI Chapter. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3464385.3467475.
Full textReports on the topic "Machine learning tools"
Harris, Philip. Physics Community Needs, Tools, and Resources for Machine Learning. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1873720.
Full textTeodoridis, Florenta, Jino Lu, and Jeffrey Furman. Mapping the Knowledge Space: Exploiting Unassisted Machine Learning Tools. Cambridge, MA: National Bureau of Economic Research, October 2022. http://dx.doi.org/10.3386/w30603.
Full textCary, Dakota, and Daniel Cebul. Destructive Cyber Operations and Machine Learning. Center for Security and Emerging Technology, November 2020. http://dx.doi.org/10.51593/2020ca003.
Full textCao, Larry. I. Machine Learning and Data Science Applications in Investments. CFA Institute Research Foundation, March 2023. http://dx.doi.org/10.56227/23.1.7.
Full textRudner, Tim, and Helen Toner. Key Concepts in AI Safety: Interpretability in Machine Learning. Center for Security and Emerging Technology, March 2021. http://dx.doi.org/10.51593/20190042.
Full textRduner, Tim G. J., and Helen Toner. Key Concepts in AI Safety: Specification in Machine Learning. Center for Security and Emerging Technology, December 2021. http://dx.doi.org/10.51593/20210031.
Full textLu, Michael, and Tina Gibson. Development of Predictive Tools for Anti-Cancer Peptide Candidates using Generative Machine Learning Models. Journal of Young Investigators, May 2021. http://dx.doi.org/10.22186/jyi.39.5.60-64.
Full textMa, Zhegang, Han Bao, Sai Zhang, Min Xian, and Andrea Mack. Exploring Advanced Computational Tools and Techniques with Artificial Intelligence and Machine Learning in Operating Nuclear Plants. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1847070.
Full textGates, Allison, Samantha Guitard, Jennifer Pillay, Sarah A. Elliott, Michele P. Dyson, Amanda S. Newton, and Lisa Hartling. Performance and Usability of Machine Learning for Screening in Systematic Reviews: A Comparative Evaluation of Three Tools. Agency for Healthcare Research and Quality (AHRQ), November 2019. http://dx.doi.org/10.23970/ahrqepcmethmachineperformance.
Full textRudner, Tim, and Helen Toner. Key Concepts in AI Safety: Robustness and Adversarial Examples. Center for Security and Emerging Technology, March 2021. http://dx.doi.org/10.51593/20190041.
Full text