Academic literature on the topic 'Machine Learning, SVM, MRI, diagnosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine Learning, SVM, MRI, diagnosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine Learning, SVM, MRI, diagnosis"
Senan, Ebrahim Mohammed, Mukti E. Jadhav, Taha H. Rassem, Abdulaziz Salamah Aljaloud, Badiea Abdulkarem Mohammed, and Zeyad Ghaleb Al-Mekhlafi. "Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning." Computational and Mathematical Methods in Medicine 2022 (May 18, 2022): 1–17. http://dx.doi.org/10.1155/2022/8330833.
Full textSowrirajan, Saran Raj, and Surendiran Balasubramanian. "Brain Tumor Classification Using Machine Learning and Deep Learning Algorithms." International Journal of Electrical and Electronics Research 10, no. 4 (December 30, 2022): 999–1004. http://dx.doi.org/10.37391/ijeer.100441.
Full textTaie, Shereen A., and Wafaa Ghonaim. "A new model for early diagnosis of alzheimer's disease based on BAT-SVM classifier." Bulletin of Electrical Engineering and Informatics 10, no. 2 (April 1, 2021): 759–66. http://dx.doi.org/10.11591/eei.v10i2.2714.
Full textRezaei, Mansour, Ehsan Zereshki, Soodeh Shahsavari, Mohammad Gharib Salehi, and Hamid Sharini. "Prediction of Alzheimer’s Disease Using Machine Learning Classifiers." International Electronic Journal of Medicine 9, no. 3 (September 30, 2020): 116–20. http://dx.doi.org/10.34172/iejm.2020.21.
Full textMohammed, Badiea Abdulkarem, Ebrahim Mohammed Senan, Taha H. Rassem, Nasrin M. Makbol, Adwan Alownie Alanazi, Zeyad Ghaleb Al-Mekhlafi, Tariq S. Almurayziq, and Fuad A. Ghaleb. "Multi-Method Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods." Electronics 10, no. 22 (November 20, 2021): 2860. http://dx.doi.org/10.3390/electronics10222860.
Full textRefaat, Fatma M., M. M. Gouda, and Mohamed Omar. "Detection and Classification of Brain Tumor Using Machine Learning Algorithms." Biomedical and Pharmacology Journal 15, no. 4 (December 20, 2022): 2381–97. http://dx.doi.org/10.13005/bpj/2576.
Full textPrado, Julio José, and Ignacio Rojas. "Machine Learning for Diagnosis of Alzheimer’s Disease and Early Stages." BioMedInformatics 1, no. 3 (December 13, 2021): 182–200. http://dx.doi.org/10.3390/biomedinformatics1030012.
Full textHassan, Mosaad W., Arabi Keshk, Amira Abd El-atey, and Elham Alfeky. "BRAIN STROKE DETECTION USING TENSOR FACTORIZATION AND MACHINE LEARNING MODELS." International Journal of Engineering Technologies and Management Research 8, no. 8 (August 16, 2021): 1–12. http://dx.doi.org/10.29121/ijetmr.v8.i8.2021.1006.
Full textWu, Wentao, Daning Li, Jiaoyang Du, Xiangyu Gao, Wen Gu, Fanfan Zhao, Xiaojie Feng, and Hong Yan. "An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm." Computational and Mathematical Methods in Medicine 2020 (July 14, 2020): 1–10. http://dx.doi.org/10.1155/2020/6789306.
Full textD Bonde, Girish, and Dr Manish Jain. "Analysis of MRI Data of Brain for CAD System." International Journal of Engineering & Technology 7, no. 2.17 (April 15, 2018): 63. http://dx.doi.org/10.14419/ijet.v7i2.17.11560.
Full textDissertations / Theses on the topic "Machine Learning, SVM, MRI, diagnosis"
SALVATORE, CHRISTIAN. "Development and validation of a Decision Support System for the automatic diagnosis of medical images from brain MRI studies." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94834.
Full textChen, Beichen, and Amy Jinxin Chen. "PCA based dimensionality reduction of MRI images for training support vector machine to aid diagnosis of bipolar disorder." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259621.
Full textSyftet med denna studie är att undersöka hur dimensionalitetsreduktion av neuroradiologisk data före träning av stödvektormaskiner (SVMs) påverkar klassificeringsnoggrannhet av bipolär sjukdom. Studien använder principalkomponentanalys (PCA) för dimensionalitetsreduktion. En datauppsättning av 19 bipolära och 31 friska magnetisk resonanstomografi(MRT) bilder användes, vilka tillhör den öppna datakällan från studien UCLA Consortium for Neuropsychiatric Phenomics LA5c som finansierades av NIH Roadmap Initiative i syfte att främja genombrott i utvecklingen av nya behandlingar för neuropsykiatriska funktionsnedsättningar. Bilderna genomgick oskärpa, särdragsextrahering och PCA innan de användes som indata för att träna SVMs. Med 3-delad korsvalidering inställdes ett antal parametrar för linjära, radiala och polynomiska kärnor. Experiment gjordes för att utforska prestationen av SVM-modeller tränade med 1 till 29 principalkomponenter (PCs). Flera PC uppsättningar uppnådde 100% noggrannhet i den slutliga utvärderingen, där den minsta uppsättningen var de två första PCs. Den ackumulativa variansen över antalet PCs som användes hade inte någon korrelation med prestationen på modellen. Valet av kärna och hyperparametrar är betydande eftersom prestationen kan variera mycket. Resultatet stödjer tidigare studier att SVM kan vara användbar som stöd för diagnostisering av bipolär sjukdom och användningen av PCA som en dimensionalitetsreduktionsmetod i kombination med SVM kan vara lämplig för klassificering av neuroradiologisk data för bipolär och andra sjukdomar. På grund av begränsningen med få dataprover, kräver resultaten framtida forskning med en större datauppsättning för att validera de erhållna noggrannheten.
Cuingnet, Rémi. "Contributions à l’apprentissage automatique pour l’analyse d’images cérébrales anatomiques." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112033/document.
Full textBrain image analyses have widely relied on univariate voxel-wise methods. In such analyses, brain images are first spatially registered to a common stereotaxic space, and then mass univariate statistical tests are performed in each voxel to detect significant group differences. However, the sensitivity of theses approaches is limited when the differences involve a combination of different brain structures. Recently, there has been a growing interest in support vector machines methods to overcome the limits of these analyses.This thesis focuses on machine learning methods for population analysis and patient classification in neuroimaging. We first evaluated the performances of different classification strategies for the identification of patients with Alzheimer's disease based on T1-weighted MRI of 509 subjects from the ADNI database. However, these methods do not take full advantage of the spatial distribution of the features. As a consequence, the optimal margin hyperplane is often scattered and lacks spatial coherence, making its anatomical interpretation difficult. Therefore, we introduced a framework to spatially regularize support vector machines for brain image analysis based on Laplacian regularization operators. The proposed framework was then applied to the analysis of stroke and of Alzheimer's disease. The results demonstrated that the proposed classifier generates less-noisy and consequently more interpretable feature maps with no loss of classification performance
Abdulkadir, Ahmed [Verfasser], and Thomas [Akademischer Betreuer] Brox. "Brain MRI analysis and machine learning for diagnosis of neurodegeneration." Freiburg : Universität, 2018. http://d-nb.info/117696805X/34.
Full textZarogianni, Eleni. "Machine learning and brain imaging in psychosis." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22814.
Full textLong, Xiaojing. "Image Classification using Pair-wise Registration and Machine Learning with Applications to Neuroimaging." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/40396.
Full textPh. D.
Lembke, Benjamin. "Bearing Diagnosis Using Fault Signal Enhancing Teqniques and Data-driven Classification." Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158240.
Full textWen, Junhao. "Structural and microstructural neuroimaging for diagnosis and tracking of neurodegenerative diseases." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS415.
Full textBiomarker identification and tracking in dementia are essential to better understand the pathological mechanism and disease trajectory. The current PhD aims has two main objectives. First, we aim to identify the most promising biomarkers at the presymptomatic stage of dementia. More specifically, we studied this in the case of genetic frontotemporal lobar degeneration due to C9orf72 mutation. The second objective is to advance early diagnosis and prognosis by using machine learning methods with magnetic resonance imaging data. We tackle this in the context of sporadic Alzheimer’s disease. According to these two objectives, the thesis consists of two main parts, each part comprising two studies. In the first study, biomarkers were identified from conventional T1-weighted MRI and diffusion tensor imaging model. The second study compared the sensitivity and specificity of the advanced NODDI model and to that of conventional techniques, namely T1-weighted MRI and DTI. The second part focuses on early diagnosis of AD and comprises the last two studies. The third study proposes an open source framework for reproducible evaluation of AD classification using diffusion MRI and conventional ML methods. The last study extends this framework to deep learning methods and demonstrates its use on T1-weighted MRI
El, Azami Meriem. "Computer aided diagnosis of epilepsy lesions based on multivariate and multimodality data analysis." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI087/document.
Full textOne third of patients suffering from epilepsy are resistant to medication. For these patients, surgical removal of the epileptogenic zone offers the possibility of a cure. Surgery success relies heavily on the accurate localization of the epileptogenic zone. The analysis of neuroimaging data such as magnetic resonance imaging (MRI) and positron emission tomography (PET) is increasingly used in the pre-surgical work-up of patients and may offer an alternative to the invasive reference of Stereo-electro-encephalo -graphy (SEEG) monitoring. To assist clinicians in screening these lesions, we developed a computer aided diagnosis system (CAD) based on a multivariate data analysis approach. Our first contribution was to formulate the problem of epileptogenic lesion detection as an outlier detection problem. The main motivation for this formulation was to avoid the dependence on labelled data and the class imbalance inherent to this detection task. The proposed system builds upon the one class support vector machines (OC-SVM) classifier. OC-SVM was trained using features extracted from MRI scans of healthy control subjects, allowing a voxelwise assessment of the deviation of a test subject pattern from the learned patterns. System performance was evaluated using realistic simulations of challenging detection tasks as well as clinical data of patients with intractable epilepsy. The outlier detection framework was further extended to take into account the specificities of neuroimaging data and the detection task at hand. We first proposed a reformulation of the support vector data description (SVDD) method to deal with the presence of uncertain observations in the training data. Second, to handle the multi-parametric nature of neuroimaging data, we proposed an optimal fusion approach for combining multiple base one-class classifiers. Finally, to help with score interpretation, threshold selection and score combination, we proposed to transform the score outputs of the outlier detection algorithm into well calibrated probabilities
Kindblom, Marie. "Diagnostic prediction on anamnesis in digital primary health care." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231827.
Full textPrimärvården förväntas genomgå en utbredd digitalisering under de kommande åren, samtidigt som maskininlärning får utökade tillämpningsområden. Sammanslagningen av dessa två fält möjliggör en mängd förbättrade tekniker, varav en vore ett förbättrat och mer rigoröst anammande av kliniska beslutsstödsystem. Det har länge funnits varianter av kliniska beslutsstödsystem, men de har ännu inte lyckats blivit fullständigt inkorporerade i primärvården, framför allt på̊ grund av bristfällig prestanda och förmåga till tolkning. Kliniskt beslutstöd erbjuder en mängd funktioner för läkare vid beslutsfattning, där ett av de mest uppmärksammade fälten inom forskningen är support vid diagnosticering. Denna uppsats ämnar att undersöka hur självbeskriven anamnes i form av fritext och flervalsfrågor presterar för förutsägning av diagnos. Det valda tillvägagångssättet har varit att jämföra text med olika delmängder av flervalsfrågor med hjälp av en mängd metoder för klassificering. Resultaten indikerar att textdatan innehåller en avsevärt större mängd information än flervalsfrågorna, samt att flervalsfrågorna som har använts i denna studie är av varierande kvalité, men generellt sett suboptimala vad gäller prestanda i jämförelse med textdatan. Den generella tendensen är att Support Vector Machines presterar bra för klassificering med text data medan Random Forests och Naive Bayes är likvärdiga alternativ till Support Vector Machines för predicering vid användning av flervalsfrågor.
Book chapters on the topic "Machine Learning, SVM, MRI, diagnosis"
Samanta, Atanu K., and Asim Ali Khan. "Computer Aided Diagnostic System for Automatic Detection of Brain Tumor Through MRI Using Clustering Based Segmentation Technique and SVM Classifier." In The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), 343–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74690-6_34.
Full textShams, Seyedmohammad, Esmaeil Davoodi-Bojd, and Hamid Soltanian-Zadeh. "Analysis of Structural MRI Data for Epilepsy Diagnosis Using Machine Learning Techniques." In Machine Learning in Medicine, 77–107. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781315101323-6.
Full textChoi, Jun-Sik, Eunho Lee, and Heung-Il Suk. "Regional Abnormality Representation Learning in Structural MRI for AD/MCI Diagnosis." In Machine Learning in Medical Imaging, 64–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00919-9_8.
Full textSilva, Aristófanes Corrêa, Anselmo Cardoso de Paiva, and Alexandre Cesar Muniz de Oliveira. "Comparison of FLDA, MLP and SVM in Diagnosis of Lung Nodule." In Machine Learning and Data Mining in Pattern Recognition, 285–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11510888_28.
Full textYadav, Samir Shrihari, and Sanjay Raghunath Sutar. "Alzheimer’s Disease Diagnosis Using Structural MRI and Machine Learning Techniques." In Lecture Notes in Electrical Engineering, 645–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5078-9_53.
Full textRieke, Johannes, Fabian Eitel, Martin Weygandt, John-Dylan Haynes, and Kerstin Ritter. "Visualizing Convolutional Networks for MRI-Based Diagnosis of Alzheimer’s Disease." In Understanding and Interpreting Machine Learning in Medical Image Computing Applications, 24–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02628-8_3.
Full textLee, Jaa-Yeon, Min A. Yoon, Choong Guen Chee, Jae Hwan Cho, Jin Hoon Park, and Sung-Hong Park. "Metal Artifact Correction MRI Using Multi-contrast Deep Neural Networks for Diagnosis of Degenerative Spinal Diseases." In Machine Learning for Medical Image Reconstruction, 44–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17247-2_5.
Full textNaren, J., Praveena Ramalingam, U. Raja Rajeswari, P. Vijayalakshmi, and G. Vithya. "An Intelligent System on Computer-Aided Diagnosis for Parkinson’s Disease with MRI Using Machine Learning." In Learning and Analytics in Intelligent Systems, 159–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39033-4_16.
Full textHerzog, Nitsa J., and George D. Magoulas. "Machine Learning-Supported MRI Analysis of Brain Asymmetry for Early Diagnosis of Dementia." In Studies in Computational Intelligence, 29–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91103-4_3.
Full textOng, Hong, Hoang Le, Hoang Nguyen, Dong Nguyen, Huong Ha, Hoan Thanh Ngo, and Nguyen Thanh Duc. "A Machine Learning Framework Based on Extreme Gradient Boosting for Intelligent Alzheimer’s Disease Diagnosis Using Structure MRI." In IFMBE Proceedings, 815–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75506-5_66.
Full textConference papers on the topic "Machine Learning, SVM, MRI, diagnosis"
Yang, Xiaofeng, Jason J. Jeong, Yang Lei, Tian Liu, Walter J. Curran, Hui Mao, Ge Cui, and Tonghe Wang. "Machine-learning-based classification of Glioblastoma using MRI-based radiomic features." In Computer-Aided Diagnosis, edited by Horst K. Hahn and Kensaku Mori. SPIE, 2019. http://dx.doi.org/10.1117/12.2513110.
Full textCarras, Peter, Carina Pereira, Debosmita Biswas, Christoph Lee, Savannah Partridge, and Adam Alessio. "Genetic algorithm for machine learning architecture selection for breast MRI classification." In Computer-Aided Diagnosis, edited by Horst K. Hahn and Maciej A. Mazurowski. SPIE, 2020. http://dx.doi.org/10.1117/12.2547490.
Full textVieceli, Michael, Amy Van Dusen, Karen Drukker, Hiroyuki Abe, Maryellen L. Giger, and Heather M. Whitney. "Case-based repeatability of machine learning classification performance on breast MRI." In Computer-Aided Diagnosis, edited by Horst K. Hahn and Maciej A. Mazurowski. SPIE, 2020. http://dx.doi.org/10.1117/12.2548144.
Full textLi, Wei, Wei Kuang, Yun Li, Yu-Jing Li, and Wei-Ping Ye. "Clinical X-Ray Image Based Tooth Decay Diagnosis using SVM." In 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370404.
Full textSahebzamani, Ghazal, Mansour Saffar, and Hamid Soltanian-Zadeh. "Machine Learning Based Analysis of Structural MRI for Epilepsy Diagnosis." In 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE, 2019. http://dx.doi.org/10.1109/pria.2019.8785985.
Full textWang, Chao-yong, Chun-guo Wu, Yan-chun Liang, and Xin-chen Guo. "Diagnosis of Breast Cancer Tumor Based on ICA and LS-SVM." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258850.
Full textSun, Hui-Qin, Zhi-Hong Xue, Yun Du, Li-Hua Sun, and Ke-Jun Sun. "Power transformer fault diagnosis based on fuzzy C-means clustering and multi-class SVM." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580647.
Full textZou, Chao, En-hui Zheng, Hong-wei Xu, and Le Chen. "SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator." In 2010 Second International Conference on Machine Learning and Computing. IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.26.
Full textAn, Jin-Long, and Zhen-Ping Ma. "Study on the method of fault diagnosis in analog circuits based on new multi-class SVM." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580826.
Full textJin-Zhuang Xiao, Hong-Rui Wang, and Zheng Gao. "Notice of Retraction: Diagnosis method for connection-related faults in motion system based on SVM." In 2009 Eighth International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212383.
Full text