Journal articles on the topic 'Machine learning potential'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Machine learning potential.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mueller, Tim, Alberto Hernandez, and Chuhong Wang. "Machine learning for interatomic potential models." Journal of Chemical Physics 152, no. 5 (February 7, 2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Full textNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization." Biotechnology and Bioprocessing 2, no. 9 (November 2, 2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Full textBarbour, Dennis L., and Jan-Willem A. Wasmann. "Performance and Potential of Machine Learning Audiometry." Hearing Journal 74, no. 3 (February 26, 2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Full textTherrien, Audrey C., Berthié Gouin-Ferland, and Mohammad Mehdi Rahimifar. "Potential of edge machine learning for instrumentation." Applied Optics 61, no. 8 (March 2, 2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Full textAwan, Kamran H., S. Satish Kumar, and Indu Bharkavi SK. "Potential Role of Machine Learning in Oncology." Journal of Contemporary Dental Practice 20, no. 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Full textDral, Pavlo O., Alec Owens, Alexey Dral, and Gábor Csányi. "Hierarchical machine learning of potential energy surfaces." Journal of Chemical Physics 152, no. 20 (May 29, 2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Full textWu, Yuexiang. "Potential pulsars prediction based on machine learning." Theoretical and Natural Science 12, no. 1 (November 17, 2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Full textAschepkov, Valeriy. "METHODS OF MACHINE LEARNING IN MODERN METROLOGY." Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Full textZelinska, Snizhana. "Machine learning: technologies and potential application at mining companies." E3S Web of Conferences 166 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202016603007.
Full textSarkar, Soumyadip. "Quantum Machine Learning: A Review." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 352–54. http://dx.doi.org/10.22214/ijraset.2023.49421.
Full textM, Shah,. "Demystifying Machine Learning." Saudi Journal of Engineering and Technology 9, no. 07 (July 9, 2024): 299–303. http://dx.doi.org/10.36348/sjet.2024.v09i07.004.
Full textSrinivasaiah, Bharath. "The Power of Personalized Healthcare: Harnessing the Potential of Machine Learning in Precision Medicine." International Journal of Science and Research (IJSR) 13, no. 5 (May 5, 2024): 426–29. http://dx.doi.org/10.21275/sr24506012313.
Full textChinnala Balakrishna and Rambabu Bommisetti. "Detecting psychological uncertainty using machine learning." International Journal of Science and Research Archive 12, no. 2 (July 30, 2024): 1365–70. http://dx.doi.org/10.30574/ijsra.2024.12.2.1399.
Full textNikoulis, Giorgos, Jesper Byggmästar, Joseph Kioseoglou, Kai Nordlund, and Flyura Djurabekova. "Machine-learning interatomic potential for W–Mo alloys." Journal of Physics: Condensed Matter 33, no. 31 (June 18, 2021): 315403. http://dx.doi.org/10.1088/1361-648x/ac03d1.
Full textWang, Peng-Ju, Jun-Yu Fan, Yan Su, and Ji-Jun Zhao. "Energetic potential of hexogen constructed by machine learning." Acta Physica Sinica 69, no. 23 (2020): 238702. http://dx.doi.org/10.7498/aps.69.20200690.
Full textMukherjee, Debashis, and Rajesh Biswal. "Machine Learning in Automotive Data Potential, Analytics Power." Auto Tech Review 4, no. 5 (May 2015): 44–49. http://dx.doi.org/10.1365/s40112-015-0916-7.
Full textSun, Lei, Badong Chen, Kar-Ann Toh, and Zhiping Lin. "Sequential extreme learning machine incorporating survival error potential." Neurocomputing 155 (May 2015): 194–204. http://dx.doi.org/10.1016/j.neucom.2014.12.029.
Full textLorena, Ana C., Luis F. O. Jacintho, Marinez F. Siqueira, Renato De Giovanni, Lúcia G. Lohmann, André C. P. L. F. de Carvalho, and Missae Yamamoto. "Comparing machine learning classifiers in potential distribution modelling." Expert Systems with Applications 38, no. 5 (May 2011): 5268–75. http://dx.doi.org/10.1016/j.eswa.2010.10.031.
Full textSharifipour, Behzad, Bahram Gholinejad, Ataollah Shirzadi, Himan Shahabi, Nadhir Al-Ansari, Asghar Farajollahi, Fatemeh Mansorypour, and John J. Clague. "Rangeland species potential mapping using machine learning algorithms." Ecological Engineering 189 (April 2023): 106900. http://dx.doi.org/10.1016/j.ecoleng.2023.106900.
Full textYu, Jingyi. "Product potential user prediction based on machine learning." Highlights in Science, Engineering and Technology 92 (April 10, 2024): 146–51. http://dx.doi.org/10.54097/2h70m008.
Full textMei, Haojie, Luyao Cheng, Liang Chen, Feifei Wang, Jinfu Li, and Lingti Kong. "Development of machine learning interatomic potential for zinc." Computational Materials Science 233 (January 2024): 112723. http://dx.doi.org/10.1016/j.commatsci.2023.112723.
Full textLee, Chien-Chang, James Yeongjun Park, and Wan-Ting Hsu. "Bridging expertise with machine learning and automated machine learning in clinical medicine." Annals of the Academy of Medicine, Singapore 53, no. 3 - Correct DOI (March 27, 2024): 129–31. http://dx.doi.org/10.47102/annals-acadmedsg.202481.
Full textLee, Chien-Chang, James Yeongjun Park, and Wan-Ting Hsu. "Bridging expertise with machine learning and automated machine learning in clinical medicine." Annals of the Academy of Medicine, Singapore 53, no. 3 (March 27, 2024): 129–31. http://dx.doi.org/10.47102/https://doi.org/10.47102/annals-acadmedsg.202481.
Full textSamahitha Kaliyuru Ravi, Sameera Kaliyuru Ravi, and A. Hema Prabha. "Advent of machine learning in autonomous vehicles." International Journal of Science and Research Archive 13, no. 1 (September 30, 2024): 1219–26. http://dx.doi.org/10.30574/ijsra.2024.13.1.1760.
Full textKamoun-Abid, Ferdaous, Hounaida Frikha, Amel Meddeb-Makhoulf, and Faouzi Zarai. "Automating cloud virtual machines allocation via machine learning." Indonesian Journal of Electrical Engineering and Computer Science 35, no. 1 (July 1, 2024): 191. http://dx.doi.org/10.11591/ijeecs.v35.i1.pp191-202.
Full textElhadary, Mohamed, Mervat Mattar, Khalil Al Farsi, Salem Alshemmari, Basel ElSayed, Omar Metwalli, Amgad Elshoeibi, Ahmed Abdelrehim Badr, Awni Alshurafa, and Mohamed A. Yassin. "Machine Learning in CLL." Blood 142, Supplement 1 (November 28, 2023): 7185. http://dx.doi.org/10.1182/blood-2023-179388.
Full textPrakash, Ujjwal. "Advanced Dietitian Using Machine Learning." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (May 8, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem33347.
Full textShi, Yang. "Research on the Stock Price Prediction Using Machine Learning." Advances in Economics, Management and Political Sciences 22, no. 1 (September 13, 2023): 174–79. http://dx.doi.org/10.54254/2754-1169/22/20230307.
Full textPatil, Rohit, Priyadarshani Alandikar, Vaibhav Chaudhari, Pradnya Patil, and Prof Swarupa Deshpande. "Water Demand Prediction Using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 122–28. http://dx.doi.org/10.22214/ijraset.2022.47797.
Full textBiswal M, Manas. "The Potential of Machine Learning for Future Mars Exploration." Acceleron Aerospace Journal 1, no. 6 (December 30, 2023): 119–20. http://dx.doi.org/10.61359/11.2106-2326.
Full textRavindran, Anjana V., Anjana V. J, and Meenakshi P. "Prediction of Learning Disability Using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 1248–54. http://dx.doi.org/10.22214/ijraset.2023.55332.
Full textSharma, Pratibha, and Manisha Joshi. "AWS Machine Learning Services." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, no. 2 (September 10, 2019): 1171–74. http://dx.doi.org/10.61841/turcomat.v10i2.14390.
Full textNagaraju, Dr R. "XSS Attack Detection using Machine Learning Algorithms." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, no. 12 (December 1, 2023): 1–11. http://dx.doi.org/10.55041/ijsrem27487.
Full textWilliam, Carter, Choki Wangmo, and Anjali Ranjan. "Unravelling the application of machine learning in cancer biomarker discovery." Cancer Insight 2, no. 1 (June 14, 2023): 1–8. http://dx.doi.org/10.58567/ci02010001.
Full textLevantesi, Susanna, Andrea Nigri, and Gabriella Piscopo. "Longevity risk management through Machine Learning: state of the art." Insurance Markets and Companies 11, no. 1 (November 25, 2020): 11–20. http://dx.doi.org/10.21511/ins.11(1).2020.02.
Full textVeeramani, Sindhu, S. M. Ramesh, and B. Gomathy. "Exploring the Potential of Machine Learning in Healthcare Accuracy Improvement." WSEAS TRANSACTIONS ON COMPUTERS 22 (December 31, 2023): 374–79. http://dx.doi.org/10.37394/23205.2023.22.42.
Full textLi, Keqin, Peng Zhao, Shuying Dai, Armando Zhu, Bo Hong, Jiabei Liu, Changsong Wei, Wenqian Huang, and Yang Zhang. "Exploring the Impact of Quantum Computing on Machine Learning Performance." Middle East Journal of Applied Science & Technology 07, no. 02 (2024): 145–61. http://dx.doi.org/10.46431/mejast.2024.7215.
Full textPatil, Bhagyashree A., Sri Adithya S, and Dr Jayanthi M G. "Detection of Malware using Machine Learning Approach." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 736–41. http://dx.doi.org/10.22214/ijraset.2023.55233.
Full textRamesh, Banoth, G. Srinivas, P. Ram Praneeth Reddy, M. D. Huraib Rasool, Divya Rawat, and Madhulita Sundaray. "Feasible Prediction of Multiple Diseases using Machine Learning." E3S Web of Conferences 430 (2023): 01051. http://dx.doi.org/10.1051/e3sconf/202343001051.
Full textArora, Aaryan, and Nirmalya Basu. "Machine Learning in Modern Healthcare." International Journal of Advanced Medical Sciences and Technology 3, no. 4 (June 30, 2023): 12–18. http://dx.doi.org/10.54105/ijamst.d3037.063423.
Full textLiu, Jinyan, Guanghao Zhang, Jianyong Wang, Hong Zhang, and Ye Han. "Research on Cu-Sn machine learning interatomic potential with active learning strategy." Computational Materials Science 246 (January 2025): 113450. http://dx.doi.org/10.1016/j.commatsci.2024.113450.
Full textChen, Samuel Yen-Chi, and Shinjae Yoo. "Federated Quantum Machine Learning." Entropy 23, no. 4 (April 13, 2021): 460. http://dx.doi.org/10.3390/e23040460.
Full textMukilan, K., K. Thaiyalnayaki, Yagya Dutta Dwivedi, J. Samson Isaac, Amarjeet Poonia, Arvind Sharma, Essam A. Al-Ammar, Saikh Mohammad Wabaidur, B. B. Subramanian, and Adane Kassa. "Prediction of Rooftop Photovoltaic Solar Potential Using Machine Learning." International Journal of Photoenergy 2022 (May 25, 2022): 1–8. http://dx.doi.org/10.1155/2022/1541938.
Full textVaganov, A. V., V. F. Zaikov, O. S. Krotova, A. I. Musokhranov, Z. V. Pokalyakin, and L. A. Khvorova. "Modeling a Potential Plant Habitat Using Machine Learning Methods." Izvestiya of Altai State University, no. 4(126) (September 9, 2022): 85–92. http://dx.doi.org/10.14258/izvasu(2022)4-13.
Full textZennaro, Federica, Elisa Furlan, Christian Simeoni, Silvia Torresan, Sinem Aslan, Andrea Critto, and Antonio Marcomini. "Exploring machine learning potential for climate change risk assessment." Earth-Science Reviews 220 (September 2021): 103752. http://dx.doi.org/10.1016/j.earscirev.2021.103752.
Full textCesarini, Luigi, Rui Figueiredo, Beatrice Monteleone, and Mario L. V. Martina. "The potential of machine learning for weather index insurance." Natural Hazards and Earth System Sciences 21, no. 8 (August 11, 2021): 2379–405. http://dx.doi.org/10.5194/nhess-21-2379-2021.
Full textErharter, Georg H., Jonas Weil, Franz Tschuchnigg, and Thomas Marcher. "Potential applications of machine learning for BIM in tunnelling." Geomechanics and Tunnelling 15, no. 2 (April 2022): 216–21. http://dx.doi.org/10.1002/geot.202100076.
Full textIvanciuc, Ovidiu. "Weka Machine Learning for Predicting the Phospholipidosis Inducing Potential." Current Topics in Medicinal Chemistry 8, no. 18 (December 1, 2008): 1691–709. http://dx.doi.org/10.2174/156802608786786589.
Full textRowe, Patrick, Volker L. Deringer, Piero Gasparotto, Gábor Csányi, and Angelos Michaelides. "An accurate and transferable machine learning potential for carbon." Journal of Chemical Physics 153, no. 3 (July 21, 2020): 034702. http://dx.doi.org/10.1063/5.0005084.
Full textReich, Yoram, and Steven J. Fenves. "The potential of machine learning techniques for expert systems." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3, no. 3 (August 1989): 175–93. http://dx.doi.org/10.1017/s0890060400001219.
Full text