Journal articles on the topic 'Machine Learning Model Robustness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Machine Learning Model Robustness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Arslan, Ayse. "Rethinking Robustness in Machine Learning: Use of Generative Adversarial Networks for Enhanced Robustness." Scholars Journal of Engineering and Technology 10, no. 3 (March 28, 2022): 9–15. http://dx.doi.org/10.36347/sjet.2022.v10i03.001.
Full textEinziger, Gil, Maayan Goldstein, Yaniv Sa’ar, and Itai Segall. "Verifying Robustness of Gradient Boosted Models." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 2446–53. http://dx.doi.org/10.1609/aaai.v33i01.33012446.
Full textThapa, Chandra, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun. "SplitFed: When Federated Learning Meets Split Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (June 28, 2022): 8485–93. http://dx.doi.org/10.1609/aaai.v36i8.20825.
Full textBalakrishnan, Charumathi, and Mangaiyarkarasi Thiagarajan. "CREDIT RISK MODELLING FOR INDIAN DEBT SECURITIES USING MACHINE LEARNING." Buletin Ekonomi Moneter dan Perbankan 24 (March 8, 2021): 107–28. http://dx.doi.org/10.21098/bemp.v24i0.1401.
Full textNguyen, Ngoc-Kim-Khanh, Quang Nguyen, Hai-Ha Pham, Thi-Trang Le, Tuan-Minh Nguyen, Davide Cassi, Francesco Scotognella, Roberto Alfierif, and Michele Bellingeri. "Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model." Complexity 2022 (November 9, 2022): 1–16. http://dx.doi.org/10.1155/2022/3616163.
Full textWu, Zhijing, and Hua Xu. "A Multi-Task Learning Machine Reading Comprehension Model for Noisy Document (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (April 3, 2020): 13963–64. http://dx.doi.org/10.1609/aaai.v34i10.7254.
Full textChuah, Joshua, Uwe Kruger, Ge Wang, Pingkun Yan, and Juergen Hahn. "Framework for Testing Robustness of Machine Learning-Based Classifiers." Journal of Personalized Medicine 12, no. 8 (August 14, 2022): 1314. http://dx.doi.org/10.3390/jpm12081314.
Full textSepulveda, Natalia Espinoza, and Jyoti Sinha. "Parameter Optimisation in the Vibration-Based Machine Learning Model for Accurate and Reliable Faults Diagnosis in Rotating Machines." Machines 8, no. 4 (October 23, 2020): 66. http://dx.doi.org/10.3390/machines8040066.
Full textZhang, Lingwen, Ning Xiao, Wenkao Yang, and Jun Li. "Advanced Heterogeneous Feature Fusion Machine Learning Models and Algorithms for Improving Indoor Localization." Sensors 19, no. 1 (January 2, 2019): 125. http://dx.doi.org/10.3390/s19010125.
Full textDrews, Samuel, Aws Albarghouthi, and Loris D'Antoni. "Proving Data-Poisoning Robustness in Decision Trees." Communications of the ACM 66, no. 2 (January 20, 2023): 105–13. http://dx.doi.org/10.1145/3576894.
Full textNiroumand-Jadidi, M., and F. Bovolo. "TEMPORALLY TRANSFERABLE MACHINE LEARNING MODEL FOR TOTAL SUSPENDED MATTER RETRIEVAL FROM SENTINEL-2." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2022 (May 17, 2022): 339–45. http://dx.doi.org/10.5194/isprs-annals-v-3-2022-339-2022.
Full textLiu, Molei, Yi Zhang, and Doudou Zhou. "Double/debiased machine learning for logistic partially linear model." Econometrics Journal 24, no. 3 (June 11, 2021): 559–88. http://dx.doi.org/10.1093/ectj/utab019.
Full textSchröder, Laura, Nikolay Krasimirov Dimitrov, David Robert Verelst, and John Aasted Sørensen. "Using Transfer Learning to Build Physics-Informed Machine Learning Models for Improved Wind Farm Monitoring." Energies 15, no. 2 (January 13, 2022): 558. http://dx.doi.org/10.3390/en15020558.
Full textZhao, Yue, Xuejian Wang, Cheng Cheng, and Xueying Ding. "Combining Machine Learning Models Using combo Library." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 09 (April 3, 2020): 13648–49. http://dx.doi.org/10.1609/aaai.v34i09.7111.
Full textSpelda, Petr, and Vit Stritecky. "Human Induction in Machine Learning." ACM Computing Surveys 54, no. 3 (June 2021): 1–18. http://dx.doi.org/10.1145/3444691.
Full textLi, Yibo, Chao Liu, Senyue Zhang, Wenan Tan, and Yanyan Ding. "Reproducing Polynomial Kernel Extreme Learning Machine." Journal of Advanced Computational Intelligence and Intelligent Informatics 21, no. 5 (September 20, 2017): 795–802. http://dx.doi.org/10.20965/jaciii.2017.p0795.
Full textEspinheira, Patrícia, Luana da Silva, Alisson Silva, and Raydonal Ospina. "Model Selection Criteria on Beta Regression for Machine Learning." Machine Learning and Knowledge Extraction 1, no. 1 (February 8, 2019): 427–49. http://dx.doi.org/10.3390/make1010026.
Full textPapadopoulos, Pavlos, Oliver Thornewill von Essen, Nikolaos Pitropakis, Christos Chrysoulas, Alexios Mylonas, and William J. Buchanan. "Launching Adversarial Attacks against Network Intrusion Detection Systems for IoT." Journal of Cybersecurity and Privacy 1, no. 2 (April 23, 2021): 252–73. http://dx.doi.org/10.3390/jcp1020014.
Full textYanjun Li, Yanjun Li, Huan Huang Yanjun Li, Qiang Geng Huan Huang, Xinwei Guo Qiang Geng, and Yuyu Yuan Xinwei Guo. "Fairness Measures of Machine Learning Models in Judicial Penalty Prediction." 網際網路技術學刊 23, no. 5 (September 2022): 1109–16. http://dx.doi.org/10.53106/160792642022092305019.
Full textSaarela, Mirka, and Lilia Geogieva. "Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model." Applied Sciences 12, no. 19 (September 23, 2022): 9545. http://dx.doi.org/10.3390/app12199545.
Full textMello, Flávio Luis de. "A Survey on Machine Learning Adversarial Attacks." Journal of Information Security and Cryptography (Enigma) 7, no. 1 (January 20, 2020): 1–7. http://dx.doi.org/10.17648/jisc.v7i1.76.
Full textLai and Tsai. "Improving GIS-based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning." Sensors 19, no. 17 (August 27, 2019): 3717. http://dx.doi.org/10.3390/s19173717.
Full textMei, Wenjuan, Zhen Liu, Yuanzhang Su, Li Du, and Jianguo Huang. "Evolved-Cooperative Correntropy-Based Extreme Learning Machine for Robust Prediction." Entropy 21, no. 9 (September 19, 2019): 912. http://dx.doi.org/10.3390/e21090912.
Full textYang, Rui, Yongbao Liu, Xing He, and Zhimeng Liu. "Gas Turbine Model Identification Based on Online Sequential Regularization Extreme Learning Machine with a Forgetting Factor." Energies 16, no. 1 (December 27, 2022): 304. http://dx.doi.org/10.3390/en16010304.
Full textZhou, Zhiyu, Xu Gao, Jianxin Zhang, Zefei Zhu, and Xudong Hu. "A novel hybrid model using the rotation forest-based differential evolution online sequential extreme learning machine for illumination correction of dyed fabrics." Textile Research Journal 89, no. 7 (March 20, 2018): 1180–97. http://dx.doi.org/10.1177/0040517518764020.
Full textLamilla, Erick, Christian Sacarelo, Manuel S. Alvarez-Alvarado, Arturo Pazmino, and Peter Iza. "Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning." Sensors 23, no. 5 (March 2, 2023): 2755. http://dx.doi.org/10.3390/s23052755.
Full textZheng, Jiao, and Zhengyu Yu. "A Novel Machine Learning-Based Systolic Blood Pressure Predicting Model." Journal of Nanomaterials 2021 (June 7, 2021): 1–8. http://dx.doi.org/10.1155/2021/9934998.
Full textNing, Kun-Peng, Lue Tao, Songcan Chen, and Sheng-Jun Huang. "Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active Queries." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 9161–69. http://dx.doi.org/10.1609/aaai.v35i10.17106.
Full textDiakonikolas, Ilias, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. "Robustness meets algorithms." Communications of the ACM 64, no. 5 (May 2021): 107–15. http://dx.doi.org/10.1145/3453935.
Full textSimester, Duncan, Artem Timoshenko, and Spyros I. Zoumpoulis. "Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges." Management Science 66, no. 6 (June 2020): 2495–522. http://dx.doi.org/10.1287/mnsc.2019.3308.
Full textAlharbi, Amal H., Aravinda C. V, Meng Lin, B. Ashwini, Mohamed Yaseen Jabarulla, and Mohd Asif Shah. "Detection of Peripheral Malarial Parasites in Blood Smears Using Deep Learning Models." Computational Intelligence and Neuroscience 2022 (May 24, 2022): 1–11. http://dx.doi.org/10.1155/2022/3922763.
Full textGröhl, Janek, Thomas Kirchner, Tim Adler, and Lena Maier-Hein. "Confidence Estimation for Machine Learning-Based Quantitative Photoacoustics." Journal of Imaging 4, no. 12 (December 10, 2018): 147. http://dx.doi.org/10.3390/jimaging4120147.
Full textTedesco, Salvatore, Martina Andrulli, Markus Åkerlund Larsson, Daniel Kelly, Antti Alamäki, Suzanne Timmons, John Barton, Joan Condell, Brendan O’Flynn, and Anna Nordström. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults." International Journal of Environmental Research and Public Health 18, no. 23 (December 4, 2021): 12806. http://dx.doi.org/10.3390/ijerph182312806.
Full textDong, M., H. Qiu, H. Wang, P. Zhi, and Z. Xu. "SONAR IMAGE RECOGNITION BASED ON MACHINE LEARNING FRAMEWORK." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-3/W1-2022 (April 22, 2022): 45–51. http://dx.doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-45-2022.
Full textJia, Jinyuan, Xiaoyu Cao, and Neil Zhenqiang Gong. "Intrinsic Certified Robustness of Bagging against Data Poisoning Attacks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 7961–69. http://dx.doi.org/10.1609/aaai.v35i9.16971.
Full textArdabili, Sina F., Amir Mosavi, Pedram Ghamisi, Filip Ferdinand, Annamaria R. Varkonyi-Koczy, Uwe Reuter, Timon Rabczuk, and Peter M. Atkinson. "COVID-19 Outbreak Prediction with Machine Learning." Algorithms 13, no. 10 (October 1, 2020): 249. http://dx.doi.org/10.3390/a13100249.
Full textHan, Bo, Bo He, Mengmeng Ma, Tingting Sun, Tianhong Yan, and Amaury Lendasse. "RMSE-ELM: Recursive Model Based Selective Ensemble of Extreme Learning Machines for Robustness Improvement." Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/395686.
Full textGao, H., L. Jézéque, E. Cabrol, and B. Vitry. "Robust Design of Suspension System with Polynomial Chaos Expansion and Machine Learning." Science & Technique 19, no. 1 (February 5, 2020): 43–54. http://dx.doi.org/10.21122/2227-1031-2020-19-1-43-54.
Full textWaldow, Fabian, Matthias Schnaubelt, Christopher Krauss, and Thomas Günter Fischer. "Machine Learning in Futures Markets." Journal of Risk and Financial Management 14, no. 3 (March 13, 2021): 119. http://dx.doi.org/10.3390/jrfm14030119.
Full textBarandas, Marília, Duarte Folgado, Ricardo Santos, Raquel Simão, and Hugo Gamboa. "Uncertainty-Based Rejection in Machine Learning: Implications for Model Development and Interpretability." Electronics 11, no. 3 (January 28, 2022): 396. http://dx.doi.org/10.3390/electronics11030396.
Full textChen, Zhanbo, and Qiufeng Wei. "Developing an Improved Survival Prediction Model for Disease Prognosis." Biomolecules 12, no. 12 (November 25, 2022): 1751. http://dx.doi.org/10.3390/biom12121751.
Full textLiu, Zhewei, Zijia Zhang, Yaoming Cai, Yilin Miao, and Zhikun Chen. "Semi-Supervised Classification via Hypergraph Convolutional Extreme Learning Machine." Applied Sciences 11, no. 9 (April 25, 2021): 3867. http://dx.doi.org/10.3390/app11093867.
Full textDunn, Corey, Nour Moustafa, and Benjamin Turnbull. "Robustness Evaluations of Sustainable Machine Learning Models against Data Poisoning Attacks in the Internet of Things." Sustainability 12, no. 16 (August 10, 2020): 6434. http://dx.doi.org/10.3390/su12166434.
Full textTóth, Martos, and Nelson Sommerfeldt. "PV self-consumption prediction methods using supervised machine learning." E3S Web of Conferences 362 (2022): 02003. http://dx.doi.org/10.1051/e3sconf/202236202003.
Full textZhang, Fengyi, Xinyuan Cui, Renrong Gong, Chuan Zhang, and Zhigao Liao. "Key Experimental Factors of Machine Learning-Based Identification of Surgery Cancellations." Journal of Healthcare Engineering 2021 (February 20, 2021): 1–10. http://dx.doi.org/10.1155/2021/6247652.
Full textWan, Zhibin, Changqing Zhang, Pengfei Zhu, and Qinghua Hu. "Multi-View Information-Bottleneck Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (May 18, 2021): 10085–92. http://dx.doi.org/10.1609/aaai.v35i11.17210.
Full textOmri, Mohamed Nazih, and Wafa Mribah. "Towards an Intelligent Machine Learning-based Business Approach." International Journal of Intelligent Systems and Applications 14, no. 1 (February 8, 2022): 1–23. http://dx.doi.org/10.5815/ijisa.2022.01.01.
Full textStachl, Clemens, Florian Pargent, Sven Hilbert, Gabriella M. Harari, Ramona Schoedel, Sumer Vaid, Samuel D. Gosling, and Markus Bühner. "Personality Research and Assessment in the Era of Machine Learning." European Journal of Personality 34, no. 5 (September 2020): 613–31. http://dx.doi.org/10.1002/per.2257.
Full textKim, Jaehun. "Increasing trust in complex machine learning systems." ACM SIGIR Forum 55, no. 1 (June 2021): 1–3. http://dx.doi.org/10.1145/3476415.3476435.
Full textSchober, Sebastian A., Yosra Bahri, Cecilia Carbonelli, and Robert Wille. "Neural Network Robustness Analysis Using Sensor Simulations for a Graphene-Based Semiconductor Gas Sensor." Chemosensors 10, no. 5 (April 21, 2022): 152. http://dx.doi.org/10.3390/chemosensors10050152.
Full text