Journal articles on the topic 'Machine Learning Informé'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Machine Learning Informé.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (April 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Full textPateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (June 7, 2023): 6892. http://dx.doi.org/10.3390/app13126892.
Full textMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng, et al. "Soil Science-Informed Machine Learning." Geoderma 452 (December 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Full textXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Full textZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu, and Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils." INFORM International News on Fats, Oils, and Related Materials 31, no. 4 (April 1, 2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Full textSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly." Annual Review of Vision Science 5, no. 1 (September 15, 2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Full textArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan, and Philip T. Thiem. "Historical maps inform landform cognition in machine learning." Abstracts of the ICA 6 (August 11, 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Full textKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (November 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Full textZhang, Xi. "Application of Machine Learning in Stock Price Analysis." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Full textLiu, Yang, Ruo Jia, Jieping Ye, and Xiaobo Qu. "How machine learning informs ride-hailing services: A survey." Communications in Transportation Research 2 (December 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Full textSchwartz, Oscar. "Competing Visions for AI." Digital Culture & Society 4, no. 1 (March 1, 2018): 87–106. http://dx.doi.org/10.14361/dcs-2018-0107.
Full textWang, Yingxu, Yousheng Tian, and Kendal Hu. "Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra." International Journal of Cognitive Informatics and Natural Intelligence 5, no. 3 (July 2011): 1–29. http://dx.doi.org/10.4018/ijcini.2011070101.
Full textPandey, Mrs Arjoo. "Machine Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 864–69. http://dx.doi.org/10.22214/ijraset.2023.55224.
Full textHancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions." Evidence Based Library and Information Practice 19, no. 2 (June 14, 2024): 133–35. http://dx.doi.org/10.18438/eblip30521.
Full textBerk, Richard, and Jordan Hyatt. "Machine Learning Forecasts of Risk to Inform Sentencing Decisions." Federal Sentencing Reporter 27, no. 4 (April 1, 2015): 222–28. http://dx.doi.org/10.1525/fsr.2015.27.4.222.
Full textSedej, Owen, Eric Mbonimpa, Trevor Sleight, and Jeremy Slagley. "Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review." Journal of Energy and Power Technology 4, no. 3 (February 18, 2022): 1. http://dx.doi.org/10.21926/jept.2203027.
Full textMasamah, Ulfa, and Dadan Sumardani. "Utilization of The Thrasher and Rice Mill Machines in Composition Function Learning: A Hypothetical Learning Trajectory Design." Hipotenusa : Journal of Mathematical Society 3, no. 2 (December 28, 2021): 144–57. http://dx.doi.org/10.18326/hipotenusa.v3i2.5994.
Full textPazzani, Michael, Severine Soltani, Robert Kaufman, Samson Qian, and Albert Hsiao. "Expert-Informed, User-Centric Explanations for Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12280–86. http://dx.doi.org/10.1609/aaai.v36i11.21491.
Full textGao, Kaifu, Dong Chen, Alfred J. Robison, and Guo-Wei Wei. "Proteome-Informed Machine Learning Studies of Cocaine Addiction." Journal of Physical Chemistry Letters 12, no. 45 (November 9, 2021): 11122–34. http://dx.doi.org/10.1021/acs.jpclett.1c03133.
Full textBarmparis, G. D., and G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning." Journal of the Optical Society of America B 38, no. 9 (August 2, 2021): C120. http://dx.doi.org/10.1364/josab.430206.
Full textPilania, G., K. J. McClellan, C. R. Stanek, and B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery." Journal of Chemical Physics 148, no. 24 (June 28, 2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Full textBai, Tao, and Pejman Tahmasebi. "Accelerating geostatistical modeling using geostatistics-informed machine Learning." Computers & Geosciences 146 (January 2021): 104663. http://dx.doi.org/10.1016/j.cageo.2020.104663.
Full textLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazzino, Lorenzo Rosasco, and Agnese Seminara. "Physics informed machine learning for wind speed prediction." Energy 268 (April 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Full textTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers, and Neil D. Sims. "Resource-efficient machining through physics-informed machine learning." Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Full textKapoor, Taniya, Hongrui Wang, Alfredo Núñez, and Rolf Dollevoet. "Physics-informed machine learning for moving load problems." Journal of Physics: Conference Series 2647, no. 15 (June 1, 2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Full textBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya, and Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting." ECS Meeting Abstracts MA2024-01, no. 2 (August 9, 2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Full textCele, Nomfundo, Alain Kibangou, and Walter Musakwa. "Machine Learning Analysis of Informal Minibus Taxi Driving." ITM Web of Conferences 69 (2024): 03003. https://doi.org/10.1051/itmconf/20246903003.
Full textThete, Prof Sharda, Siddheshwar Midgule, Nikesh Konde, and Suraj Kale. "Malware Detection Using Machine Learning and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (November 30, 2022): 1942–45. http://dx.doi.org/10.22214/ijraset.2022.47682.
Full textMidgule, Siddheshwar. "Malware Detection Using Machine Learning and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 4755–58. http://dx.doi.org/10.22214/ijraset.2023.52704.
Full textLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee, and Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Full textChen, James Ming, Mira Zovko, Nika Šimurina, and Vatroslav Zovko. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution." International Journal of Environmental Research and Public Health 18, no. 16 (August 17, 2021): 8688. http://dx.doi.org/10.3390/ijerph18168688.
Full textShah, Chirag Vinalbhai. "Transforming Retail: The Impact of AI and Machine Learning on Big Data Analytics." Global Research and Development Journals 8, no. 8 (August 1, 2023): 1–8. http://dx.doi.org/10.70179/grdjev09i100010.
Full textRavi, Aravind. "Optimizing Retail Operations: The Role of Machine Learning and Big Data in Data Science." Global Research and Development Journals 9, no. 6 (June 5, 2024): 1–10. http://dx.doi.org/10.70179/grdjev09i100015.
Full textK., Mrs Tejaswi. "Unmasking DeepFakes Using Machine Learning." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (March 30, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29808.
Full textSiontis, Konstantinos C., Xiaoxi Yao, James P. Pirruccello, Anthony A. Philippakis, and Peter A. Noseworthy. "How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?" Circulation Research 127, no. 1 (June 19, 2020): 155–69. http://dx.doi.org/10.1161/circresaha.120.316401.
Full textLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability." AIP Advances 11, no. 2 (February 1, 2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Full textMondal, B., T. Mukherjee, and T. DebRoy. "Crack free metal printing using physics informed machine learning." Acta Materialia 226 (March 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Full textHowland, Michael F., and John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning." Energies 12, no. 14 (July 16, 2019): 2716. http://dx.doi.org/10.3390/en12142716.
Full textTartakovsky, A. M., D. A. Barajas-Solano, and Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions." Journal of Computational Physics 426 (February 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Full textHsu, Abigail, Baolian Cheng, and Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning." Physics of Plasmas 27, no. 1 (January 2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Full textKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley, and Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae." Astrophysical Journal 940, no. 1 (November 1, 2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Full textLang, Xiao, Da Wu, and Wengang Mao. "Physics-informed machine learning models for ship speed prediction." Expert Systems with Applications 238 (March 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Full textUganya, G., I. Bremnavas, K. V. Prashanth, M. Rajkumar, R. V. S. Lalitha, and Charanjeet Singh. "Empowering autonomous indoor navigation with informed machine learning techniques." Computers and Electrical Engineering 111 (October 2023): 108918. http://dx.doi.org/10.1016/j.compeleceng.2023.108918.
Full textPiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu, and Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning." IEEE Transactions on Artificial Intelligence 5, no. 3 (March 2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Full textKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez, and Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (March 24, 2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Full textMarian, Max, and Stephan Tremmel. "Physics-Informed Machine Learning—An Emerging Trend in Tribology." Lubricants 11, no. 11 (October 30, 2023): 463. http://dx.doi.org/10.3390/lubricants11110463.
Full textLiu, Hao-Xuan, Hai-Le Yan, Ying Zhao, Nan Jia, Shuai Tang, Daoyong Cong, Bo Yang, et al. "Machine learning informed tetragonal ratio c/a of martensite." Computational Materials Science 233 (January 2024): 112735. http://dx.doi.org/10.1016/j.commatsci.2023.112735.
Full textvon Bloh, Malte, David Lobell, and Senthold Asseng. "Knowledge informed hybrid machine learning in agricultural yield prediction." Computers and Electronics in Agriculture 227 (December 2024): 109606. http://dx.doi.org/10.1016/j.compag.2024.109606.
Full textCheraghlou, Shayan, Praneeth Sadda, George O. Agogo, and Michael Girardi. "A machine‐learning modified CART algorithm informs Merkel cell carcinoma prognosis." Australasian Journal of Dermatology 62, no. 3 (May 24, 2021): 323–30. http://dx.doi.org/10.1111/ajd.13624.
Full textGao, Junbo. "Applications of machine learning in quantitative trading." Applied and Computational Engineering 82, no. 1 (November 8, 2024): 124–29. http://dx.doi.org/10.54254/2755-2721/82/20240984.
Full text