Journal articles on the topic 'Machine learning, Global Optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Machine learning, Global Optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cassioli, A., D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone. "Machine learning for global optimization." Computational Optimization and Applications 51, no. 1 (May 5, 2010): 279–303. http://dx.doi.org/10.1007/s10589-010-9330-x.
Full textKudyshev, Zhaxylyk A., Alexander V. Kildishev, Vladimir M. Shalaev, and Alexandra Boltasseva. "Machine learning–assisted global optimization of photonic devices." Nanophotonics 10, no. 1 (October 28, 2020): 371–83. http://dx.doi.org/10.1515/nanoph-2020-0376.
Full textAbdul Salam, Mustafa, Ahmad Taher Azar, and Rana Hussien. "Swarm-Based Extreme Learning Machine Models for Global Optimization." Computers, Materials & Continua 70, no. 3 (2022): 6339–63. http://dx.doi.org/10.32604/cmc.2022.020583.
Full textTAKAMATSU, Ryosuke, and Wataru YAMAZAKI. "Global topology optimization of supersonic airfoil using machine learning technologies." Proceedings of The Computational Mechanics Conference 2021.34 (2021): 112. http://dx.doi.org/10.1299/jsmecmd.2021.34.112.
Full textTsoulos, Ioannis G., Alexandros Tzallas, Evangelos Karvounis, and Dimitrios Tsalikakis. "NeuralMinimizer: A Novel Method for Global Optimization." Information 14, no. 2 (January 25, 2023): 66. http://dx.doi.org/10.3390/info14020066.
Full textHonda, M., and E. Narita. "Machine-learning assisted steady-state profile predictions using global optimization techniques." Physics of Plasmas 26, no. 10 (October 2019): 102307. http://dx.doi.org/10.1063/1.5117846.
Full textWu, Shaohua, Yong Hu, Wei Wang, Xinyong Feng, and Wanneng Shu. "Application of Global Optimization Methods for Feature Selection and Machine Learning." Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/241517.
Full textMa, Sicong, Cheng Shang, Chuan-Ming Wang, and Zhi-Pan Liu. "Thermodynamic rules for zeolite formation from machine learning based global optimization." Chemical Science 11, no. 37 (2020): 10113–18. http://dx.doi.org/10.1039/d0sc03918g.
Full textHuang, Si-Da, Cheng Shang, Pei-Lin Kang, and Zhi-Pan Liu. "Atomic structure of boron resolved using machine learning and global sampling." Chemical Science 9, no. 46 (2018): 8644–55. http://dx.doi.org/10.1039/c8sc03427c.
Full textBarkalov, Konstantin, Ilya Lebedev, and Evgeny Kozinov. "Acceleration of Global Optimization Algorithm by Detecting Local Extrema Based on Machine Learning." Entropy 23, no. 10 (September 28, 2021): 1272. http://dx.doi.org/10.3390/e23101272.
Full textWang, Wei-Ching. "Sound localization via deep learning, generative modeling, and global optimization." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A255. http://dx.doi.org/10.1121/10.0011240.
Full textZhang, Ao, Yan Liu, Jinguang Yang, Zhi Li, Chuang Zhang, and Yiwen Li. "Machine learning based design optimization of centrifugal impellers." Journal of the Global Power and Propulsion Society 6 (July 25, 2022): 124–34. http://dx.doi.org/10.33737/jgpps/150663.
Full textHa, Seung-Yeal, Shi Jin, and Doheon Kim. "Convergence of a first-order consensus-based global optimization algorithm." Mathematical Models and Methods in Applied Sciences 30, no. 12 (September 19, 2020): 2417–44. http://dx.doi.org/10.1142/s0218202520500463.
Full textSpillard, Samuel, Christopher J. Turner, and Konstantinos Meichanetzidis. "Machine learning entanglement freedom." International Journal of Quantum Information 16, no. 08 (December 2018): 1840002. http://dx.doi.org/10.1142/s0219749918400026.
Full textCandelieri, Antonio, and Francesco Archetti. "Global optimization in machine learning: the design of a predictive analytics application." Soft Computing 23, no. 9 (November 1, 2018): 2969–77. http://dx.doi.org/10.1007/s00500-018-3597-8.
Full textLi, Shijin, and Fucai Wang. "Research on Optimization of Improved Gray Wolf Optimization-Extreme Learning Machine Algorithm in Vehicle Route Planning." Discrete Dynamics in Nature and Society 2020 (October 6, 2020): 1–7. http://dx.doi.org/10.1155/2020/8647820.
Full textKramer, Oliver. "On Machine Symbol Grounding and Optimization." International Journal of Cognitive Informatics and Natural Intelligence 5, no. 3 (July 2011): 73–85. http://dx.doi.org/10.4018/ijcini.2011070105.
Full textKubwimana, Benjamin, and Hamidreza Najafi. "A Novel Approach for Optimizing Building Energy Models Using Machine Learning Algorithms." Energies 16, no. 3 (January 17, 2023): 1033. http://dx.doi.org/10.3390/en16031033.
Full textLi, Yibo, Chao Liu, Senyue Zhang, Wenan Tan, and Yanyan Ding. "Reproducing Polynomial Kernel Extreme Learning Machine." Journal of Advanced Computational Intelligence and Intelligent Informatics 21, no. 5 (September 20, 2017): 795–802. http://dx.doi.org/10.20965/jaciii.2017.p0795.
Full textBarkalov, Konstantin, Ilya Lebedev, Marina Usova, Daria Romanova, Daniil Ryazanov, and Sergei Strijhak. "Optimization of Turbulence Model Parameters Using the Global Search Method Combined with Machine Learning." Mathematics 10, no. 15 (July 31, 2022): 2708. http://dx.doi.org/10.3390/math10152708.
Full textÖzöğür Akyüz, Süreyya, Gürkan Üstünkar, and Gerhard Wilhelm Weber. "Adapted Infinite Kernel Learning by Multi-Local Algorithm." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 04 (April 12, 2016): 1651004. http://dx.doi.org/10.1142/s0218001416510046.
Full textSmithies, Rob, Said Salhi, and Nat Queen. "Adaptive Hybrid Learning for Neural Networks." Neural Computation 16, no. 1 (January 1, 2004): 139–57. http://dx.doi.org/10.1162/08997660460734038.
Full textYi, Dokkyun, Sangmin Ji, and Sunyoung Bu. "An Enhanced Optimization Scheme Based on Gradient Descent Methods for Machine Learning." Symmetry 11, no. 7 (July 20, 2019): 942. http://dx.doi.org/10.3390/sym11070942.
Full textSong, Tao, Jiarong Wang, Danya Xu, Wei Wei, Runsheng Han, Fan Meng, Ying Li, and Pengfei Xie. "Unsupervised Machine Learning for Improved Delaunay Triangulation." Journal of Marine Science and Engineering 9, no. 12 (December 7, 2021): 1398. http://dx.doi.org/10.3390/jmse9121398.
Full textLi, Yang, Zhichuan Zhu, Alin Hou, Qingdong Zhao, Liwei Liu, and Lijuan Zhang. "Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO." Computational and Mathematical Methods in Medicine 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1461470.
Full textKawaguchi, Kenji, Jiaoyang Huang, and Leslie Pack Kaelbling. "Every Local Minimum Value Is the Global Minimum Value of Induced Model in Nonconvex Machine Learning." Neural Computation 31, no. 12 (December 2019): 2293–323. http://dx.doi.org/10.1162/neco_a_01234.
Full textKhan, Waqar Ahmed, S. H. Chung, Muhammad Usman Awan, and Xin Wen. "Machine learning facilitated business intelligence (Part II)." Industrial Management & Data Systems 120, no. 1 (November 27, 2019): 128–63. http://dx.doi.org/10.1108/imds-06-2019-0351.
Full textGuo, Xiaohua. "Optimization of English Machine Translation by Deep Neural Network under Artificial Intelligence." Computational Intelligence and Neuroscience 2022 (April 21, 2022): 1–10. http://dx.doi.org/10.1155/2022/2003411.
Full textFan, Yanyan, Yu Zhang, Baosu Guo, Xiaoyuan Luo, Qingjin Peng, and Zhenlin Jin. "A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning." Mathematics 10, no. 16 (August 22, 2022): 3019. http://dx.doi.org/10.3390/math10163019.
Full textPapakonstantinou, Charalampos, Ioannis Daramouskas, Vaios Lappas, Vassilis C. Moulianitis, and Vassilis Kostopoulos. "A Machine Learning Approach for Global Steering Control Moment Gyroscope Clusters." Aerospace 9, no. 3 (March 17, 2022): 164. http://dx.doi.org/10.3390/aerospace9030164.
Full textBelmahdi, Brahim, Mohamed Louzazni, and Abdelmajid El Bouardi. "Comparative optimization of global solar radiation forecasting using machine learning and time series models." Environmental Science and Pollution Research 29, no. 10 (October 8, 2021): 14871–88. http://dx.doi.org/10.1007/s11356-021-16760-8.
Full textMeldgaard, Søren A., Esben L. Kolsbjerg, and Bjørk Hammer. "Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies." Journal of Chemical Physics 149, no. 13 (October 7, 2018): 134104. http://dx.doi.org/10.1063/1.5048290.
Full textZhou, Shuchen, Waqas Jadoon, and Junaid Shuja. "Machine Learning-Based Offloading Strategy for Lightweight User Mobile Edge Computing Tasks." Complexity 2021 (June 8, 2021): 1–11. http://dx.doi.org/10.1155/2021/6455617.
Full textSun, Qian, William Ampomah, Junyu You, Martha Cather, and Robert Balch. "Practical CO2—WAG Field Operational Designs Using Hybrid Numerical-Machine-Learning Approaches." Energies 14, no. 4 (February 17, 2021): 1055. http://dx.doi.org/10.3390/en14041055.
Full textZong Chen, Dr Joy Iong, and Kong-Long Lai. "Machine Learning based Energy Management at Internet of Things Network Nodes." Journal of Trends in Computer Science and Smart Technology 2, no. 3 (July 17, 2020): 127–33. http://dx.doi.org/10.36548/jtcsst.2020.3.001.
Full textRoncaglia, Cesare, Daniele Rapetti, and Riccardo Ferrando. "Regression and clustering algorithms for AgCu nanoalloys: from mixing energy predictions to structure recognition." Physical Chemistry Chemical Physics 23, no. 40 (2021): 23325–35. http://dx.doi.org/10.1039/d1cp02143e.
Full textLi, Xiguang, Shoufei Han, Liang Zhao, Changqing Gong, and Xiaojing Liu. "New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems." Computational Intelligence and Neuroscience 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/4523754.
Full textGao, H., L. Jézéque, E. Cabrol, and B. Vitry. "Robust Design of Suspension System with Polynomial Chaos Expansion and Machine Learning." Science & Technique 19, no. 1 (February 5, 2020): 43–54. http://dx.doi.org/10.21122/2227-1031-2020-19-1-43-54.
Full textMa, Yun Jie, Zi Hui Ren, and Ping Zhu. "A Layer Hybrid Intelligent Algorithm for Solving Resources Scheduling Problem." Applied Mechanics and Materials 644-650 (September 2014): 1506–9. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.1506.
Full textFeigl, Moritz, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz. "Machine-learning methods for stream water temperature prediction." Hydrology and Earth System Sciences 25, no. 5 (May 31, 2021): 2951–77. http://dx.doi.org/10.5194/hess-25-2951-2021.
Full textKawaguchi, Kenji, Yu Maruyama, and Xiaoyu Zheng. "Global Continuous Optimization with Error Bound and Fast Convergence." Journal of Artificial Intelligence Research 56 (June 15, 2016): 153–95. http://dx.doi.org/10.1613/jair.4742.
Full textHan, Shoufei, Kun Zhu, and Ran Wang. "Improvement of evolution process of dandelion algorithm with extreme learning machine for global optimization problems." Expert Systems with Applications 163 (January 2021): 113803. http://dx.doi.org/10.1016/j.eswa.2020.113803.
Full textYu, Xi, Li Li, Xin He, Shengbo Chen, and Lei Jiang. "Federated Learning Optimization Algorithm for Automatic Weight Optimal." Computational Intelligence and Neuroscience 2022 (November 9, 2022): 1–19. http://dx.doi.org/10.1155/2022/8342638.
Full textAlqahtani, Abdulwahab, Xupeng He, Bicheng Yan, and Hussein Hoteit. "Uncertainty Analysis of CO2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization." Energies 16, no. 4 (February 8, 2023): 1684. http://dx.doi.org/10.3390/en16041684.
Full textRen, Bin, and Huanfei Ma. "Global optimization of hyper-parameters in reservoir computing." Electronic Research Archive 30, no. 7 (2022): 2719–29. http://dx.doi.org/10.3934/era.2022139.
Full textLi, Shuang, and Qiuwei Li. "Local and Global Convergence of General Burer-Monteiro Tensor Optimizations." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 9 (June 28, 2022): 10266–74. http://dx.doi.org/10.1609/aaai.v36i9.21267.
Full textAl-Mashhadani, Firas, Ibrahim Al-Jadir, and Qusay Alsaffar. "An enhanced krill herd optimization technique used for classification problem." Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 30, no. 2 (July 5, 2021): 354–64. http://dx.doi.org/10.22630/pniks.2021.30.2.30.
Full textLiang, Chunyu, Xin Xu, Heping Chen, Wensheng Wang, Kunkun Zheng, Guojin Tan, Zhengwei Gu, and Hao Zhang. "Machine Learning Approach to Develop a Novel Multi-Objective Optimization Method for Pavement Material Proportion." Applied Sciences 11, no. 2 (January 17, 2021): 835. http://dx.doi.org/10.3390/app11020835.
Full textArrinda, Mikel, Gorka Vertiz, Denis Sanchéz, Aitor Makibar, and Haritz Macicior. "Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control." Energies 15, no. 5 (February 24, 2022): 1695. http://dx.doi.org/10.3390/en15051695.
Full textFeng, Yi, Mengru Liu, Yuqian Zhang, and Jinglin Wang. "A Dynamic Opposite Learning Assisted Grasshopper Optimization Algorithm for the Flexible JobScheduling Problem." Complexity 2020 (December 30, 2020): 1–19. http://dx.doi.org/10.1155/2020/8870783.
Full text