Academic literature on the topic 'Machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine learning"
M. Brandao, Iago, and Cesar da Costa. "FAULT DIAGNOSIS OF ROTARY MACHINES USING MACHINE LEARNING." Eletrônica de Potência 27, no. 03 (September 22, 2022): 1–8. http://dx.doi.org/10.18618/rep.2022.3.0013.
Full textNaeini, Ehsan Zabihi, and Kenton Prindle. "Machine learning and learning from machines." Leading Edge 37, no. 12 (December 2018): 886–93. http://dx.doi.org/10.1190/tle37120886.1.
Full textSabeti, Behnam, Hossein Abedi Firouzjaee, Reza Fahmi, Saeid Safavi, Wenwu Wang, and Mark D. Plumbley. "Credit Risk Rating Using State Machines and Machine Learning." International Journal of Trade, Economics and Finance 11, no. 6 (December 2020): 163–68. http://dx.doi.org/10.18178/ijtef.2020.11.6.683.
Full textTrott, David. "Deceiving Machines: Sabotaging Machine Learning." CHANCE 33, no. 2 (April 2, 2020): 20–24. http://dx.doi.org/10.1080/09332480.2020.1754067.
Full textSiddique, Shumaila. "Machine Learning and Cryptography." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 2540–45. http://dx.doi.org/10.5373/jardcs/v12sp7/20202387.
Full textCharpentier, Arthur, Emmanuel Flachaire, and Antoine Ly. "Econometrics and Machine Learning." Economie et Statistique / Economics and Statistics, no. 505d (April 11, 2019): 147–69. http://dx.doi.org/10.24187/ecostat.2018.505d.1970.
Full textMor, Laksanya. "Introduction to Machine Learning." International Journal of Science and Research (IJSR) 11, no. 3 (March 5, 2022): 1522–25. http://dx.doi.org/10.21275/sr22328110600.
Full textLewis, Ted G., and Peter J. Denning. "Learning machine learning." Communications of the ACM 61, no. 12 (November 20, 2018): 24–27. http://dx.doi.org/10.1145/3286868.
Full textRasi, Mr Ajmal, Dr Rajasimha A. Makram, and Ms Shilpa Das. "Topic Detection using Machine Learning." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 1433–36. http://dx.doi.org/10.31142/ijtsrd14272.
Full textMudiraj, Nakkala Srinivas. "Detecting Phishing using Machine Learning." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (June 30, 2019): 488–90. http://dx.doi.org/10.31142/ijtsrd23755.
Full textDissertations / Theses on the topic "Machine learning"
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Full textData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Dinakar, Karthik. "Lensing Machines : representing perspective in machine learning." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112523.
Full textCataloged from PDF version of thesis. Due to the condition of the original material with text runs off the edges of the pages, the reproduction may have unavoidable flaws.
Includes bibliographical references (pages 167-172).
Generative models are venerated as full probabilistic models that randomly generate observable data given a set of latent variables that cannot be directly observed. They can be used to simulate values for variables in the model, allowing analysis by synthesis or model criticism, towards an iterative cycle of model specification, estimation, and critique. However, many datasets represent a combination of several viewpoints - different ways of looking at the same data that leads to various generalizations. For example, a corpus that has data generated by multiple people may be mixtures of several perspectives and can be viewed with different opinions by others. It isn't always possible to represent the viewpoints by clean separation, in advance, of examples representing each perspective and train a separate model for each point of view. In this thesis, we introduce lensing, a mixed-initiative technique to (i) extract lenses or mappings between machine-learned representations and perspectives of human experts, and (2) generate lensed models that afford multiple perspectives of the same dataset. We explore lensing of latent variable model in their configuration, parameter and evidential spaces. We apply lensing to three health applications, namely imbuing the perspectives of experts into latent variable models that analyze adolescent distress and crisis counseling.
by Karthik Dinakar.
Ph. D.
Tebbifakhr, Amirhossein. "Machine Translation For Machines." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/320504.
Full textRoderus, Jens, Simon Larson, and Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Full textCollazo, Santiago Bryan Omar. "Machine learning blocks." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100301.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
This work presents MLBlocks, a machine learning system that lets data scientists explore the space of modeling techniques in a very easy and efficient manner. We show how the system is very general in the sense that virtually any problem and dataset can be casted to use MLBlocks, and how it supports the exploration of Discriminative Modeling, Generative Modeling and the use of synthetic features to boost performance. MLBlocks is highly parameterizable, and some of its powerful features include the ease of formulating lead and lag experiments for time series data, its simple interface for automation, and its extensibility to additional modeling techniques. We show how we used MLBlocks to quickly get results for two very different realworld data science problems. In the first, we used time series data from Massive Open Online Courses to cast many lead and lag formulations of predicting student dropout. In the second, we used MLBlocks' Discriminative Modeling functionality to find the best-performing model for predicting the destination of a car given its past trajectories. This later functionality is self-optimizing and will find the best model by exploring a space of 11 classification algorithms with a combination of Multi-Armed Bandit strategies and Gaussian Process optimizations, all in a distributed fashion in the cloud.
by Bryan Omar Collazo Santiago.
M. Eng.
Shukla, Ritesh. "Machine learning ecosystem : implications for business strategy centered on machine learning." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107342.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
As interest for adopting machine learning as a core component of a business strategy increases, business owners face the challenge of integrating an uncertain and rapidly evolving technology into their organization, and depending on this for the success of their strategy. The field of Machine learning has a rich set of literature for modeling of technical systems that implement machine learning. This thesis attempts to connect the literature for business and technology and for evolution and adoption of technology to the emergent properties of machine learning systems. This thesis provides high-level levers and frameworks to better prepare business owners to adopt machine learning to satisfy their strategic goals.
by Ritesh Shukla.
S.M. in Engineering and Management
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Full textLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Cardamone, Dario. "Support Vector Machine a Machine Learning Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textKent, W. F. "Machine learning for parameter identification of electric induction machines." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399178.
Full textMenke, Joshua E. "Improving machine learning through oracle learning /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1726.pdf.
Full textBooks on the topic "Machine learning"
Zhou, Zhi-Hua. Machine Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1967-3.
Full textJung, Alexander. Machine Learning. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8193-6.
Full textMitchell, Tom M., Jaime G. Carbonell, and Ryszard S. Michalski. Machine Learning. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2279-5.
Full textFernandes de Mello, Rodrigo, and Moacir Antonelli Ponti. Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94989-5.
Full textBell, Jason. Machine Learning. Indianapolis, IN, USA: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781119183464.
Full textHuang, Kaizhu, Haiqin Yang, Irwin King, and Michael Lyu. Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79452-3.
Full textJebara, Tony. Machine Learning. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9011-2.
Full textVorobeychik, Yevgeniy, and Murat Kantarcioglu. Adversarial Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01580-9.
Full textChen, Zhiyuan, and Bing Liu. Lifelong Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01581-6.
Full textTsihrintzis, George A., Dionisios N. Sotiropoulos, and Lakhmi C. Jain, eds. Machine Learning Paradigms. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-94030-4.
Full textBook chapters on the topic "Machine learning"
Wehenkel, Louis A. "Machine Learning." In Automatic Learning Techniques in Power Systems, 99–144. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5451-6_5.
Full textCios, Krzysztof J., Witold Pedrycz, and Roman W. Swiniarski. "Machine Learning." In Data Mining Methods for Knowledge Discovery, 229–308. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5589-6_6.
Full textSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 21–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_2.
Full textDinsmore, Thomas W. "Machine Learning." In Disruptive Analytics, 169–98. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1311-7_8.
Full textYao, Xin, and Yong Liu. "Machine Learning." In Search Methodologies, 477–517. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6940-7_17.
Full textBen-Ari, Mordechai, and Francesco Mondada. "Machine Learning." In Elements of Robotics, 221–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62533-1_14.
Full textKwok, James T., Zhi-Hua Zhou, and Lei Xu. "Machine Learning." In Springer Handbook of Computational Intelligence, 495–522. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43505-2_29.
Full textCobia, Derin. "Machine Learning." In Encyclopedia of Clinical Neuropsychology, 2058–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_9058.
Full textZielesny, Achim. "Machine Learning." In Intelligent Systems Reference Library, 221–380. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21280-2_4.
Full textCamastra, Francesco, and Alessandro Vinciarelli. "Machine Learning." In Advanced Information and Knowledge Processing, 99–106. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6735-8_4.
Full textConference papers on the topic "Machine learning"
Kozhenkov, A., E. Z. Naeini, and K. Prindle. "Machine Learning and Learning from Machines." In Progress’19. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201953052.
Full textChaudhuri, Arjun, Jonti Talukdar, and Krishnendu Chakrabarty. "Machine Learning for Testing Machine-Learning Hardware." In ICCAD '22: IEEE/ACM International Conference on Computer-Aided Design. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3508352.3561121.
Full text"Machine learning." In 2015 International Symposium on Advanced Computing and Communication (ISACC). IEEE, 2015. http://dx.doi.org/10.1109/isacc.2015.7377313.
Full textMitrofanova, A. S., and G. V. Komlev. "Machine learning." In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2018. http://dx.doi.org/10.18411/lj-11-2018-180.
Full text"Machine Learning." In 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2019. http://dx.doi.org/10.1109/iwssip.2019.8787334.
Full textYoung, Ramsey, and Jonathan Ringenberg. "Machine Learning." In SIGCSE '19: The 50th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287324.3293806.
Full textMohammed, Hadi, Ibrahim A. Hameed, and Razak Seidu. "Machine learning." In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3208235.
Full text"Machine Learning." In 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2022. http://dx.doi.org/10.1109/iwssip55020.2022.9854395.
Full textJordan, Michael I. "Machine learning." In TURC 2018: ACM Turing Celebration Conference - China. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3210713.3210718.
Full textHan, DongYeob. "Crack detection of UAV concrete surface images." In Applications of Machine Learning, edited by Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal, and Khan M. Iftekharuddin. SPIE, 2019. http://dx.doi.org/10.1117/12.2525174.
Full textReports on the topic "Machine learning"
Vesselinov, Velimir Valentinov. Machine Learning. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1492563.
Full textValiant, L. G. Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada283386.
Full textChase, Melissa P. Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, April 1990. http://dx.doi.org/10.21236/ada223732.
Full textKagie, Matthew J., and Park Hays. FORTE Machine Learning. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1561828.
Full textLin, Youzuo, Shihang Feng, and Esteban Rougier. Machine Learning Tutorial. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1876777.
Full textVassilev, Apostol. Adversarial Machine Learning:. Gaithersburg, MD: National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.ai.100-2e2023.
Full textKelly, Bryan, and Dacheng Xiu. Financial Machine Learning. Cambridge, MA: National Bureau of Economic Research, July 2023. http://dx.doi.org/10.3386/w31502.
Full textCaplin, Andrew, Daniel Martin, and Philip Marx. Modeling Machine Learning. Cambridge, MA: National Bureau of Economic Research, October 2022. http://dx.doi.org/10.3386/w30600.
Full textChristie, Lorna. Interpretable machine learning. Parliamentary Office of Science and Technology, October 2020. http://dx.doi.org/10.58248/pn633.
Full textLin, Youzuo. Machine Learning in Subsurface. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467315.
Full text