Academic literature on the topic 'Machine calibration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine calibration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine calibration"
Haitjema. "Calibration of Displacement Laser Interferometer Systems for Industrial Metrology." Sensors 19, no. 19 (September 22, 2019): 4100. http://dx.doi.org/10.3390/s19194100.
Full textZhuang, Hanqi, Lixin Liu, and Oren Masory. "Autonomous Calibration of Hexapod Machine Tools1." Journal of Manufacturing Science and Engineering 122, no. 1 (November 1, 1997): 140–48. http://dx.doi.org/10.1115/1.538893.
Full textHampel, David, Kateřina Jůzová, and Martina Matulíková. "Credit rating calibration." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 60, no. 2 (2012): 79–84. http://dx.doi.org/10.11118/actaun201260020079.
Full textKajima, Mariko, Tsukasa Watanabe, Makoto Abe, and Toshiyuki Takatsuji. "Calibrator for 2D Grid Plate Using Imaging Coordinate Measuring Machine with Laser Interferometers." International Journal of Automation Technology 9, no. 5 (September 5, 2015): 541–45. http://dx.doi.org/10.20965/ijat.2015.p0541.
Full text李, 冬. "Machine Vision Pixel Calibration." Artificial Intelligence and Robotics Research 03, no. 02 (2014): 25–33. http://dx.doi.org/10.12677/airr.2014.32005.
Full textKUMAR, HARISH. "A CONTEMPORARY APPROACH FOR EVALUATION OF THE BEST MEASUREMENT CAPABILITY OF A FORCE CALIBRATION MACHINE." International Journal of Modern Physics: Conference Series 24 (January 2013): 1360013. http://dx.doi.org/10.1142/s2010194513600136.
Full textTAKAMASU, Kiyoshi, Ryoshu FURUTANI, Ken SHIMOJIMA, and Osamu SATO. "Artifact Calibration of Coordinate Measuring Machine-Kinematic Calibration-." Journal of the Japan Society for Precision Engineering 69, no. 6 (2003): 851–55. http://dx.doi.org/10.2493/jjspe.69.851.
Full textHuang, Feng Shan, and Li Chen. "CCD Camera Calibration Technology Based on the Translation of Coordinate Measuring Machine." Applied Mechanics and Materials 568-570 (June 2014): 320–25. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.320.
Full textIgarashi, Hiroshi. "Subliminal Calibration for Machine Operation." Journal of Advanced Computational Intelligence and Intelligent Informatics 16, no. 1 (January 20, 2012): 108–16. http://dx.doi.org/10.20965/jaciii.2012.p0108.
Full textXiong, Zhong Xing, Feng Li, and Bin Li. "A Calibration Device and Method to Calibrate the Beam’s Direction of the Point Laser Probe." Applied Mechanics and Materials 799-800 (October 2015): 980–84. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.980.
Full textDissertations / Theses on the topic "Machine calibration"
Haussamer, Nicolai Haussamer. "Model Calibration with Machine Learning." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29451.
Full textStark, Per. "Machine vision camera calibration and robot communication." Thesis, University West, Department of Technology, Mathematics and Computer Science, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-1351.
Full textThis thesis is a part of a larger project included in the European project, AFFIX. The reason for the project is to try to develop a new method to assemble an aircraft engine part so that the weight and manufacturing costs are reduced. The proposal is to weld sheet metal parts instead of using cast parts. A machine vision system is suggested to be used in order to detect the joints for the weld assembly operation of the sheet metal. The final system aims to locate a hidden curve on an object. The coordinates for the curve are calculated by the machine vision system and sent to a robot. The robot should create and follow a path by using the coordinates. The accuracy for locating the curve to perform an approved weld joint must be within +/- 0.5 mm. This report investigates the accuracy of the camera calibration and the positioning of the robot. It also brushes the importance of good lightning when obtaining images for a vision system and the development for a robot program that receives these coordinates and transform them into robot movements are included. The camera calibration is done in a toolbox for MatLab and it extracts the intrinsic camera parameters such as the distance between the centre of the lens and the optical detector in the camera: f, lens distortion parameters and principle point. It also returns the location of the camera and orientation at each obtained image during the calibration, the extrinsic parameters. The intrinsic parameters are used when translating between image coordinates and camera coordinates and the extrinsic parameters are used when translating between camera coordinates and world coordinates. The results of this project are a transformation matrix that translates the robots position into the cameras position. It also contains a robot program that can receive a large number of coordinates, store them and create a path to move along for the weld application.
Alvarez, Teleña S. "Systematic trading : calibration advances through machine learning." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1461997/.
Full textUlmer, Bernard C. Jr. "Fabrication and calibration of an open architecture diamond turning machine." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17120.
Full textParkinson, Simon. "Construction of machine tool calibration plans using domain-independent automated planning." Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/20329/.
Full textNichols, Scott A. "Improvement of the camera calibration through the use of machine learning techniques." [Gainesville, Fla.] : University of Florida, 2001. http://etd.fcla.edu/etd/uf/2001/anp1587/nichols%5Fthesis.pdf.
Full textTitle from first page of PDF file. Document formatted into pages; contains vii, 45 p.; also contains graphics. Vita. Includes bibliographical references (p. 43-44).
Herron, Christopher, and André Zachrisson. "Machine Learning Based Intraday Calibration of End of Day Implied Volatility Surfaces." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273419.
Full textImplicita volatilitetsytor är ett viktigt vektyg för front office- och riskhanteringsfunktioner hos Nasdaq och andra finansiella institut som behöver omvärdera deras portföljer bestående av derivat under dagen men också för att mäta risk i handeln. Baserat på ovannämnda affärsbehov är det eftertraktat att kunna kalibrera de implicita volatilitets ytorna som skapas i slutet av dagen nästkommande dag baserat på ny marknadsinformation. I denna uppsats används statistisk inlärning för att kalibrera dessa ytor. Detta görs genom att uttnytja historiska ytor från optioner i OMXS30 under 2019 i kombination med optioner nära at the money för att träna 3 Maskininlärnings modeller. Modellerna inkluderar Feed Forward Neural Network, Recurrent Neural Network och Gaussian Process som vidare jämfördes baserat på data som var bearbetat på olika sätt. Den bästa Maskinlärnings modellen jämfördes med ett basvärde som bestod av att använda föregående dags yta där resultatet inte innebar någon större förbättring. Samtidigt hade modellen en lägre spridning samt genomsnittligt fel i jämförelse med basvärdet som indikerar att det finns potential att använda Maskininlärning för att kalibrera dessa ytor.
Sousa, João Beleza Teixeira Seixas e. "Machine learning Gaussian short rate." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/12230.
Full textThe main theme of this thesis is the calibration of a short rate model under the risk neutral measure. The problem of calibrating short rate models arises as most of the popular models have the drawback of not fitting prices observed in the market, in particular, those of the zero coupon bonds that define the current term structure of interest rates. This thesis proposes a risk neutral Gaussian short rate model based on Gaussian processes for machine learning regression using the Vasicek short rate model as prior. The proposed model fits not only the prices that define the current term structure observed in the market but also all past prices. The calibration is done using market observed zero coupon bond prices, exclusively. No other sources of information are needed. This thesis has two parts. The first part contains a set of self-contained finished papers, one already published, another accepted for publication and the others submitted for publication. The second part contains a set of self-contained unsubmitted papers. Although the fundamental work on papers in part two is finished as well, there are some extra work we want to include before submitting them for publication. Part I: - Machine learning Vasicek model calibration with Gaussian processes In this paper we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. We stress that the only prices needed for calibration are market observed zero coupon bond prices and that the parameters are directly obtained in the arbitrage free risk neutral measure. - One Factor Machine Learning Gaussian Short Rate In this paper we model the short rate, under the risk neutral measure, as a Gaussian process, conditioned on market observed zero coupon bonds log prices. The model is based on Gaussian processes for machine learning, using a single Vasicek factor as prior. All model parameters are learned directly under the risk neutral measure,using zero coupon bonds log prices only. The model supports observations of zero coupon bounds with distinct maturities limited to one observation per time instant. All the supported observations are automatically fitted.
M2A/ISEL financing conference trips; ISEL - financing conference fees; ISEL/IPL the PROTEC scholarship; CMA/FCT/UNL - financing conference trips
Solorzano, Soria Ana Maria. "Fire Detectors Based on Chemical Sensor Arrays and Machine Learning Algorithms: Calibration and Test." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/669584.
Full textLes alarmes convencionals d'incendis es basen en la detecció de fums. Tanmateix, els incendis solen emetre molts volàtils abans d'emetre fum. Altres grups de recerca ja han proposat sistemes detectors d'incendis basats en sensors químics, que poden proporcionar una resposta més ràpida, però segueixen sent propensos a falses alarmes davant d'interferències. Les tècniques de reconeixement de patrons poden ser útils per mitigar aquesta limitació. En aquesta tesi, es desenvolupen dos detectors d’incendis basats exclusivament en sensors de gas, de diverses tecnologies, que proporcionen una alarma d’incendi basada en algorismes d’aprenentatge automàtic. Els detectors van ser exposats a incendis estandarditzats i a diverses interferències. La tesi presenta dos enfocaments diferents pel reconeixement de patrons: el primer es basa en una anàlisi discriminant de mínims quadrats parcials, PLS-DA, i el segon es basa en una màquina de vectors de suport, SVM. Els resultats confirmen la capacitat de detectar incendis a una fase inicial del seu desenvolupament i el rebuig de la majoria de les interferències. A més, es presenten dues metodologies per a la reducció dels costos de calibratge d'agrupacions de sensors de gas per la detecció d'incendis, tenint present que els experiments per avaluar els detectors es fan en una sala d'incendis estàndard i són molt llargs i costosos. La primera metodologia proposada combina dades procedents d'una sala d'incendis estàndard i dades d'experiments fets a petita escala, més ràpids i menys costosos. Els resultats mostren que el rendiment dels models de predicció pot millorar amb la fusió de dades. La segona metodologia de reducció de costos compensa la necessitat de models de calibratge individuals per a cada matriu de sensors (a causa de la variabilitat del sensor) rebutjant la variabilitat del sensor i proporcionant models generals de calibratge.
Dutra, Calainho Felipe. "Evaluation of Calibration Methods to Adjust for Infrequent Values in Data for Machine Learning." Thesis, Högskolan Dalarna, Mikrodataanalys, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28134.
Full textBooks on the topic "Machine calibration"
Pahk, H. Computer aided volumetric error calibration of coordinate measuring machine. Manchester: UMIST, 1990.
Find full textLitvin, F. L. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Find full textLandrum, Roger. Flexo folder gluer: Maintenance and calibration procedures. Atlanta, GA: TAPPI press, 1996.
Find full textNAMAS. Calibration of weighing machines and weights. 3rd ed. Teddington: NAMAS, 1992.
Find full textLandrum, Roger. Rotary diecutter: Maintenance and calibration procedures. Atlanta, GA: TAPPI Press, 1996.
Find full textNAMAS. General criteria for laboratory accreditation: The calibration of weighing machines. [U.K.]: National Measurement Accreditation Service, 1988.
Find full textFast probing considerations for on-machine inspection of parts. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textD, Wilkin Neil, and National Institute of Standards and Technology (U.S.), eds. Fast probing considerations for on-machine inspection of parts. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textApplications of modeling and identification to improve machine performance: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Atlanta, Georgia, December 1-6, 1991. New York, N.Y: ASME, 1991.
Find full textAmerican Society of Mechanical Engineers., ed. Parametric calibration of coordinate measuring machines. New York: ASME, 1991.
Find full textBook chapters on the topic "Machine calibration"
Mayer, J. R. R. "Machine Tool Calibration." In Precision Manufacturing, 1–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-4912-5_6-1.
Full textMayer, J. R. R. "Machine Tool Calibration." In Precision Manufacturing, 189–214. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-4938-5_6.
Full textGodding, Robert. "Camera Calibration." In Handbook of Machine and Computer Vision, 291–316. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527413409.ch5.
Full textSmith, Graham T. "Laser Instrumentation and Calibration." In Machine Tool Metrology, 201–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25109-7_2.
Full textFlach, Peter A. "Classifier Calibration." In Encyclopedia of Machine Learning and Data Mining, 1–8. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_900-1.
Full textFlach, Peter A. "Classifier Calibration." In Encyclopedia of Machine Learning and Data Mining, 210–17. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_900.
Full textSmith, Graham T. "Optical Instrumentation for Machine Calibration." In Machine Tool Metrology, 279–344. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25109-7_3.
Full textBatchelor, Bruce G. "Appendix E: Robot Vision: Calibration." In Machine Vision Handbook, 2053–61. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-84996-169-1_46.
Full textZiegert, J. C., B. Jokiel, and C. C. Huang. "Calibration and Self-Calibration of Hexapod Machine Tools." In Parallel Kinematic Machines, 205–16. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0885-6_13.
Full textManske, Eberhard, Rostislav Mastylo, Tino Hausotte, Norbert Hofmann, and Gerd Jäger. "Advances in Traceable Nanometrology with the Nanopositioning and Nanomeasuring Machine." In Nanoscale Calibration Standards and Methods, 45–59. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606661.ch4.
Full textConference papers on the topic "Machine calibration"
P, Sturm,. "Self-Calibration of a Moving Camera by Pre-Calibration." In British Machine Vision Conference 1996. British Machine Vision Association, 1996. http://dx.doi.org/10.5244/c.10.55.
Full textBatista, Jorge, Jorge Dias, Helder Araiijo, and A. Traqa-de-Almeida. "Monoplanar Camera Calibration." In British Machine Vision Conference 1993. British Machine Vision Association, 1993. http://dx.doi.org/10.5244/c.7.48.
Full textHermann, Gyula. "Linear scale calibration machine." In 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 2011. http://dx.doi.org/10.1109/sami.2011.5738864.
Full textLoser, Raimund, John Rogers, and Stephen Kyle. "Kern space theodolite calibration." In Close-Range Photogrammetry Meets Machine Vision. SPIE, 1990. http://dx.doi.org/10.1117/12.2294285.
Full textCaesar, Holger, Jasper Uijlings, and Vittorio Ferrari. "Joint Calibration for Semantic Segmentation." In British Machine Vision Conference 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.29.
Full textPorrill, J., and S. B. Pollard. "Curve matching and stereo calibration." In British Machine Vision Conference 1990. British Machine Vision Association, 1990. http://dx.doi.org/10.5244/c.4.9.
Full textBeardsley, P. A., and D. W. Murray. "Camera Calibration Using Vanishing Points." In British Machine Vision Conference 1992. Springer-Verlag London Limited, 1992. http://dx.doi.org/10.5244/c.6.43.
Full textAntone, M., and Y. Friedman. "Fully Automated Laser Range Calibration." In British Machine Vision Conference 2007. British Machine Vision Association, 2007. http://dx.doi.org/10.5244/c.21.66.
Full textHermann, Gyula. "Calibration machine for linear scales." In 2009 7th International Symposium on Intelligent Systems and Informatics (SISY). IEEE, 2009. http://dx.doi.org/10.1109/sisy.2009.5291158.
Full textIgarashi, Hiroshi. "Subliminal calibration for machine operation." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415070.
Full textReports on the topic "Machine calibration"
Angerami, Aaron, Piyush Karande, Wojtek Fedorko, Mark Hodgkinson, Albert Kong, Alison Lister, Nicholas Luongo, et al. Machine Learning for Pion Identification and Energy Calibration with the ATLAS Detector. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1638440.
Full textGrigg, D. A., P. E. Russell, and T. A. Dow. Design and calibration of a scanning tunneling microscope for large machined surfaces. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/476625.
Full text