Academic literature on the topic 'MACHINE ALGORITHMS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MACHINE ALGORITHMS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MACHINE ALGORITHMS"
Mishra, Akshansh, and Apoorv Vats. "Supervised Machine Learning Classification Algorithms for Detection of Fracture Location in Dissimilar Friction Stir Welded Joints." Frattura ed Integrità Strutturale 15, no. 58 (September 25, 2021): 242–53. http://dx.doi.org/10.3221/igf-esis.58.18.
Full textBenbouzid, Bilel. "Unfolding Algorithms." Science & Technology Studies 32, no. 4 (December 13, 2019): 119–36. http://dx.doi.org/10.23987/sts.66156.
Full textHE, YONG, SHUGUANG HAN, and YIWEI JIANG. "ONLINE ALGORITHMS FOR SCHEDULING WITH MACHINE ACTIVATION COST." Asia-Pacific Journal of Operational Research 24, no. 02 (April 2007): 263–77. http://dx.doi.org/10.1142/s0217595907001231.
Full textTURAN, SELIN CEREN, and MEHMET ALI CENGIZ. "ENSEMBLE LEARNING ALGORITHMS." Journal of Science and Arts 22, no. 2 (June 30, 2022): 459–70. http://dx.doi.org/10.46939/j.sci.arts-22.2-a18.
Full textLing, Qingyang. "Machine learning algorithms review." Applied and Computational Engineering 4, no. 1 (June 14, 2023): 91–98. http://dx.doi.org/10.54254/2755-2721/4/20230355.
Full textSameer, S. K. L., and P. Sriramya. "Improving the Efficiency by Novel Feature Extraction Technique Using Decision Tree Algorithm Comparing with SVM Classifier Algorithm for Predicting Heart Disease." Alinteri Journal of Agriculture Sciences 36, no. 1 (June 29, 2021): 713–20. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21100.
Full textMeena, Munesh, and Ruchi Sehrawat. "Breakdown of Machine Learning Algorithms." Recent Trends in Artificial Intelligence & it's Applications 1, no. 3 (October 16, 2022): 25–29. http://dx.doi.org/10.46610/rtaia.2022.v01i03.005.
Full textMaitre, Julien, Sébastien Gaboury, Bruno Bouchard, and Abdenour Bouzouane. "A Black-Box Model for Estimation of the Induction Machine Parameters Based on Stochastic Algorithms." International Journal of Monitoring and Surveillance Technologies Research 3, no. 3 (July 2015): 44–67. http://dx.doi.org/10.4018/ijmstr.2015070103.
Full textCastelo, Noah, Maarten W. Bos, and Donald Lehmann. "Let the Machine Decide: When Consumers Trust or Distrust Algorithms." NIM Marketing Intelligence Review 11, no. 2 (November 1, 2019): 24–29. http://dx.doi.org/10.2478/nimmir-2019-0012.
Full textK.M., Umamaheswari. "Road Accident Perusal Using Machine Learning Algorithms." International Journal of Psychosocial Rehabilitation 24, no. 5 (March 31, 2020): 1676–82. http://dx.doi.org/10.37200/ijpr/v24i5/pr201839.
Full textDissertations / Theses on the topic "MACHINE ALGORITHMS"
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Full textData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Romano, Donato. "Machine Learning algorithms for predictive diagnostics applied to automatic machines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22319/.
Full textMoon, Gordon Euhyun. "Parallel Algorithms for Machine Learning." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1561980674706558.
Full textRoderus, Jens, Simon Larson, and Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Full textSahoo, Shibashankar. "Soft machine : A pattern language for interacting with machine learning algorithms." Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-182467.
Full textDunkelberg, Jr John S. "FEM Mesh Mapping to a SIMD Machine Using Genetic Algorithms." Digital WPI, 2001. https://digitalcommons.wpi.edu/etd-theses/1154.
Full textWilliams, Cristyn Barry. "Colour constancy : human mechanisms and machine algorithms." Thesis, City University London, 1995. http://openaccess.city.ac.uk/7731/.
Full textMitchell, Brian. "Prepositional phrase attachment using machine learning algorithms." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412729.
Full textPASSOS, BRUNO LEONARDO KMITA DE OLIVEIRA. "SCHEDULING ALGORITHMS APPLICATION FOR MACHINE AVAILABILITY CONSTRAINT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24311@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Grande parte da literatura de problemas de escalonamento assume que todas as máquinas estão disponíveis durante todo o período de análise o que, na prática, não é verdade, pois algumas das máquinas podem estar indisponíveis para processamento sem aviso prévio devido a problemas ou a políticas de utilização de seus recursos. Nesta tese, exploramos algumas das poucas heurísticas disponíveis na literatura para a minimização do makespan para este tipo de problema NP-difícil e apresentamos uma nova heurística que utiliza estatísticas de disponibilidade das máquinas para gerar um escalonamento. O estudo experimental com dados reais mostrou que a nova heurística apresenta ganhos de makespan em relação aos demais algoritmos clássicos que não utilizam informações de disponibilidade no processo de decisão. A aplicação prática deste problema está relacionada a precificação de ativos de uma carteira teórica de forma a estabelecer o risco de mercado da forma mais rápida possível através da utilização de recursos tecnológicos ociosos.
Most literature in scheduling theory assumes that machines are always available during the scheduling time interval, which in practice is not true due to machine breakdowns or resource usage policies. We study a few available heuristics for the NP-hard problem of minimizing the makespan when breakdowns may happen. We also develop a new scheduling heuristic based on historical machine availability information. Our experimental study, with real data, suggests that this new heuristic is better in terms of makespan than other algorithms that do not take this information into account. We apply the results of our investigation for the asset-pricing problem of a fund portfolio in order to determine a full valuation market risk using idle technological resources of a company.
Wen, Tong 1970. "Support Vector Machine algorithms : analysis and applications." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8404.
Full textIncludes bibliographical references (p. 89-97).
Support Vector Machines (SVMs) have attracted recent attention as a learning technique to attack classification problems. The goal of my thesis work is to improve computational algorithms as well as the mathematical understanding of SVMs, so that they can be easily applied to real problems. SVMs solve classification problems by learning from training examples. From the geometry, it is easy to formulate the finding of SVM classifiers as a linearly constrained Quadratic Programming (QP) problem. However, in practice its dual problem is actually computed. An important property of the dual QP problem is that its solution is sparse. The training examples that determine the SVM classifier are known as support vectors (SVs). Motivated by the geometric derivation of the primal QP problem, we investigate how the dual problem is related to the geometry of SVs. This investigation leads to a geometric interpretation of the scaling property of SVMs and an algorithm to further compress the SVs. A random model for the training examples connects the Hessian matrix of the dual QP problem to Wishart matrices. After deriving the distributions of the elements of the inverse Wishart matrix Wn-1(n, nI), we give a conjecture about the summation of the elements of Wn-1(n, nI). It becomes challenging to solve the dual QP problem when the training set is large. We develop a fast algorithm for solving this problem. Numerical experiments show that the MATLAB implementation of this projected Conjugate Gradient algorithm is competitive with benchmark C/C++ codes such as SVMlight and SvmFu. Furthermore, we apply SVMs to time series data.
(cont.) In this application, SVMs are used to predict the movement of the stock market. Our results show that using SVMs has the potential to outperform the solution based on the most widely used geometric Brownian motion model of stock prices.
by Tong Wen.
Ph.D.
Books on the topic "MACHINE ALGORITHMS"
Li, Fuwei, Lifeng Lai, and Shuguang Cui. Machine Learning Algorithms. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16375-3.
Full textAyyadevara, V. Kishore. Pro Machine Learning Algorithms. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3564-5.
Full textArnold, Schönhage. Fast algorithms: A multitape Turing machine implementation. Mannheim: B.I. Wissenschaftsverlag, 1994.
Find full textWhelan, Paul F., and Derek Molloy. Machine Vision Algorithms in Java. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0251-9.
Full textGrefenstette, John J., ed. Genetic Algorithms for Machine Learning. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2740-4.
Full textMandal, Jyotsna Kumar, Somnath Mukhopadhyay, Paramartha Dutta, and Kousik Dasgupta, eds. Algorithms in Machine Learning Paradigms. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1041-0.
Full textMachine vision: theory, algorithms, practicalities. London: Academic, 1990.
Find full textDavies, E. R. Machine vision: Theory, algorithms, practicalities. 3rd ed. Amsterdam: Elsevier, 2005.
Find full textJ, Grefenstette John, ed. Genetic algorithms for machine learning. Boston: Kluwer Academic Publishers, 1994.
Find full textPaliouras, Georgios. Scalability of machine learning algorithms. Manchester: University of Manchester, 1993.
Find full textBook chapters on the topic "MACHINE ALGORITHMS"
Geetha, T. V., and S. Sendhilkumar. "Classification Algorithms." In Machine Learning, 127–51. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003290100-6.
Full textBrucker, Peter. "Single Machine Scheduling Problems." In Scheduling Algorithms, 61–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24804-0_4.
Full textBrucker, Peter. "Single Machine Scheduling Problems." In Scheduling Algorithms, 61–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04550-3_4.
Full textBrucker, Peter. "Single Machine Scheduling Problems." In Scheduling Algorithms, 61–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03612-9_4.
Full textBrucker, Peter. "Single Machine Scheduling Problems." In Scheduling Algorithms, 60–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03088-2_4.
Full textPendyala, Vishnu. "Machine Learning Algorithms." In Veracity of Big Data, 87–118. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3633-8_5.
Full textPanesar, Arjun. "Machine Learning Algorithms." In Machine Learning and AI for Healthcare, 119–88. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-3799-1_4.
Full textSteger, Carsten. "Machine Vision Algorithms." In Handbook of Machine and Computer Vision, 505–698. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527413409.ch9.
Full textPanesar, Arjun. "Machine Learning Algorithms." In Machine Learning and AI for Healthcare, 85–144. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6537-6_4.
Full textZhou, Ding-Xuan. "Machine Learning Algorithms." In Encyclopedia of Applied and Computational Mathematics, 839–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_301.
Full textConference papers on the topic "MACHINE ALGORITHMS"
Wang, Yingfeng, Zhijing Liu, and Wei Yan. "Algorithms for Random Adjacency Matrixes Generation Used for Scheduling Algorithms Test." In 2010 International Conference on Machine Vision and Human-machine Interface. IEEE, 2010. http://dx.doi.org/10.1109/mvhi.2010.190.
Full textArden, Farel, and Cutifa Safitri. "Hyperparameter Tuning Algorithm Comparison with Machine Learning Algorithms." In 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2022. http://dx.doi.org/10.1109/icitisee57756.2022.10057630.
Full textTeixeira, L. P., W. Celes, and M. Gattass. "Accelerated Corner-Detector Algorithms." In British Machine Vision Conference 2008. British Machine Vision Association, 2008. http://dx.doi.org/10.5244/c.22.62.
Full textNarendra, Pat. "VLSI Architectures for Real-Time Image Processing." In Machine Vision. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/mv.1985.fd4.
Full textShabdirova, Ainash, Ashirgul Kozhagulova, Minh Nguyen, and Yong Zhao. "A Novel Approach to Sand Volume Prediction Using Machine Learning Algorithms." In International Petroleum Technology Conference. IPTC, 2023. http://dx.doi.org/10.2523/iptc-22770-ea.
Full textHalyo, Nesim, and Richard W. Samms. "Combined Optimization of Image Gathering Optics and Image Processing Algorithm for Edge Detection." In Machine Vision. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/mv.1985.thd1.
Full textAbdullahi, M. I., G. I. O. Aimufua, and U. A. Muhammad. "Application of Sales Forecasting Model Based on Machine Learning Algorithms." In 28th iSTEAMS Multidisciplinary Research Conference AIUWA The Gambia. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v28p17.
Full textCourtney, P., R. B. Yates, and P. A. Ivey. "Mapping Algorithms on to Platforms: An Approach to Algorithm and Hardware Co-Design." In British Machine Vision Conference 1994. British Machine Vision Association, 1994. http://dx.doi.org/10.5244/c.8.79.
Full textGarnica, O. "Finite state machine optimization using genetic algorithms." In Second International Conference on Genetic Algorithms in Engineering Systems. IEE, 1997. http://dx.doi.org/10.1049/cp:19971194.
Full textKhan, Rehan Ullah, and Saleh Albahli. "Machine Learning Augmentation." In ACAI 2019: 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3377713.3377726.
Full textReports on the topic "MACHINE ALGORITHMS"
Stepp, Robert E., Bradley L. Whitehall, and Lawrence B. Holder. Toward Intelligent Machine Learning Algorithms. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada197049.
Full textCaravelli, Francesco. Towards memristor supremacy with novel machine learning algorithms. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1822713.
Full textDim, Odera, Carlos Soto, Yonggang Cui, Lap-Yan Cheng, Maia Gemmill, Thomas Grice, Joseph Rivers, Warren Stern, and Michael Todosow. VERIFICATION OF TRISO FUEL BURNUP USING MACHINE LEARNING ALGORITHMS. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1813329.
Full textWaldrop, Lauren, Carl Hart, Nancy Parker, Chris Pettit, and Scotland McIntosh. Utility of machine learning algorithms for natural background photo classification. Cold Regions Research and Engineering Laboratory (U.S.), June 2018. http://dx.doi.org/10.21079/11681/27344.
Full textGrechanuk, Pavel, Michael Rising, and Todd Palmer. Application of Machine Learning Algorithms to Identify Problematic Nuclear Data. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1906466.
Full textBissett, W. P. Optimizing Machine Learning Algorithms For Hyperspectral Very Shallow Water (VSW) Products. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada531071.
Full textBissett, W. P. Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada504929.
Full textBissett, W. P. Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada516714.
Full textPoczos, Barnabas. Machine Learning Algorithms for Matching Theories, Simulations, and Observations in Cosmology. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1572709.
Full textHerrera, Allen, Eugene Moore, and Alexander Heifetz. Development of Gamma Background Radiation Digital Twin with Machine Learning Algorithms. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1735365.
Full text