Academic literature on the topic 'Macdonald spherical function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Macdonald spherical function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Macdonald spherical function"
Shilin, I. A., and Junesang Choi. "Some Connections between the Spherical and Parabolic Bases on the Cone Expressed in terms of the Macdonald Function." Abstract and Applied Analysis 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/741079.
Full textFratila, Dragos. "Cusp eigenforms and the hall algebra of an elliptic curve." Compositio Mathematica 149, no. 6 (March 4, 2013): 914–58. http://dx.doi.org/10.1112/s0010437x12000784.
Full textLetzter, Gail. "Quantum zonal spherical functions and Macdonald polynomials." Advances in Mathematics 189, no. 1 (December 2004): 88–147. http://dx.doi.org/10.1016/j.aim.2003.11.007.
Full textMantero, A. M., and A. Zappa. "Macdonald formula for spherical functions on affine buildings." Annales de la faculté des sciences de Toulouse Mathématiques 20, no. 4 (2011): 669–758. http://dx.doi.org/10.5802/afst.1321.
Full textoblomkov, alexei a., and jasper v. stokman. "vector valued spherical functions and macdonald–koornwinder polynomials." Compositio Mathematica 141, no. 05 (September 2005): 1310–50. http://dx.doi.org/10.1112/s0010437x05001636.
Full textvan Diejen, J. F., and E. Emsiz. "Pieri formulas for Macdonald’s spherical functions and polynomials." Mathematische Zeitschrift 269, no. 1-2 (May 30, 2010): 281–92. http://dx.doi.org/10.1007/s00209-010-0727-0.
Full textvan Diejen, J. F., E. Emsiz, and I. N. Zurrián. "Affine Pieri rule for periodic Macdonald spherical functions and fusion rings." Advances in Mathematics 392 (December 2021): 108027. http://dx.doi.org/10.1016/j.aim.2021.108027.
Full textvan Diejen, J. F., and E. Emsiz. "Unitary representations of affine Hecke algebras related to Macdonald spherical functions." Journal of Algebra 354, no. 1 (March 2012): 180–210. http://dx.doi.org/10.1016/j.jalgebra.2012.01.005.
Full textSchiffmann, O., and E. Vasserot. "The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials." Compositio Mathematica 147, no. 1 (July 7, 2010): 188–234. http://dx.doi.org/10.1112/s0010437x10004872.
Full textNoumi, Masatoshi. "Macdonald's Symmetric Polynomials as Zonal Spherical Functions on Some Quantum Homogeneous Spaces." Advances in Mathematics 123, no. 1 (October 1996): 16–77. http://dx.doi.org/10.1006/aima.1996.0066.
Full textDissertations / Theses on the topic "Macdonald spherical function"
Parkinson, James William. "Buildings and Hecke Algebras." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/642.
Full textParkinson, James William. "Buildings and Hecke Algebras." University of Sydney. Mathematics and Statistics, 2005. http://hdl.handle.net/2123/642.
Full textBook chapters on the topic "Macdonald spherical function"
Ueno, Kimio, and Tadayoshi Takebayashi. "Zonal spherical functions on quantum symmetric spaces and MacDonald's symmetric polynomials." In Lecture Notes in Mathematics, 142–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0101186.
Full textNelsen, K., and A. Ram. "Kostka–Foulkes polynomials and Macdonald spherical functions." In Surveys in Combinatorics 2003, 325–70. Cambridge University Press, 2003. http://dx.doi.org/10.1017/cbo9781107359970.011.
Full text