Dissertations / Theses on the topic 'Lupinus angustifolius L'

To see the other types of publications on this topic, follow the link: Lupinus angustifolius L.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Lupinus angustifolius L.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Katroschan, Kai-Uwe [Verfasser]. "Narrow-leaved lupine (Lupinus angustifolius L.) as nitrogen source in organic vegetable production systems / Kai-Uwe Katroschan." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2011. http://d-nb.info/1013289676/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boersma, Jeffrey George. "Contributions to the molecular genetics of the Narrow-leaf Lupin (Lupinus augustifolius L.) : mapping, marker development and QTL analysis." University of Western Australia. School of Earth and Geographical Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0001.

Full text
Abstract:
[Truncated abstract] Narrow-leaf lupin (Lupinus angustifolius L.) was first recorded as having been introduced into Germany during the mid-19th century for use as green manuring and as fodder crops. However, it was not until post World-War I that there was any serious attempt to domesticate the species. Since that time several key domestication genes have been incorporated to enable the species to be grown as a crop over a range of climates, harvested as a bulk commodity and, the seed used for both animal and human consumption. However, the recent domestication of this species has seen a rather limited use of wild germplasm largely as a result of the difficulty in retaining these key domestication genes. To make the task of retaining these genes manageable, it was decided to resort to molecular technology. A mapping population of F8 derived recombinant inbred lines (RILs) has previously been established by the Department of Agriculture and Food, Western Australia, from a cross between a domesticated breeding line 83A:476 and a wild type P27255 in narrow-leaf lupin. The parents together with 89 RILs (of a population of 115) were subjected to DNA fingerprinting using microsatelliteanchored fragment length polymorphism (MFLP) to rapidly generate DNA markers for construction of a linkage map. Five hundred and twenty two unique markers of which 21% were co-dominant, were generated and mapped. Phenotypic data for the domestication traits: mollis (soft seeds), leucospermus (white flower and seed colour); Lentus (reduced pod-shattering), iucundis (low alkaloid), Ku (early flowering) and moustache pattern on seed coats; were included. Three to 7 molecular markers were identified within 5 cM of each of these domestication genes. The anthracnose resistance gene Lanr1 was also mapped. Linkage groups were constructed using MapManager version QTXb20, resulting in 21 linkage groups consisting of 8 or more markers. ... Five pairs of QTLs were found to be involved in epistasis, 2 of these having an effect on early vigour and another 3 influencing the time to opening of the first florets. Variation explained for each trait ranged from 28% for seed size, to 88% for days to flowering. We showed that it was possible to use this data to predict genotypes of superior progeny for these traits under Mediterranean conditions. QTL regions were compared on a second published linkage map and regions of conserved synteny with the model legume Medicago truncatula high-lighted. The work presented in this thesis demonstrates the importance of tight linkage between markers and genes of interest. It is especially important when dealing with genetically diverse material as found in the wild. One of the main problems faced by molecular scientists is the phenomenon known as linkage disequilibrium in marker populations caused by either small population size or 4 insufficient opportunity for recombination. This frequently results in the development of markers with little or no application outside of the population in which it was developed. Although the relatively small size of the population used in this study exposes it to such constraints, in this case excellent and valuable results were achieved in developing useful markers to at least 3 of the domestication traits within a relatively short time period of less then 4 years.
APA, Harvard, Vancouver, ISO, and other styles
3

Fischer, Kristin [Verfasser]. "Genetische und molekulare Charakterisierung züchtungsrelevanter Merkmale der Blauen Süßlupine (Lupinus angustifolius L.) / Kristin Fischer." Gießen : Universitätsbibliothek, 2018. http://d-nb.info/1167158911/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, Sideth. "Effect of irrigation on growth and nitrogen accumulation of Kabuli chickpea (Cicer arietinum L.) and narrow-leafed lupin (Lupinus angustifolius L.)." Diss., Lincoln University, 2009. http://hdl.handle.net/10182/1126.

Full text
Abstract:
A field experiment was conducted to examine the responses in growth, total dry matter (TDM), seed yield and nitrogen (N) accumulation of Kabuli chickpea cv. Principe and narrow-leafed lupin cv. Fest to different irrigation levels and N fertilizer on a Templeton silt loam soil at Lincoln University, Canterbury, New Zealand in 2007/08. The irrigation and fertilizer treatments were double full irrigation, full irrigation, half irrigation and nil irrigation and a control, full irrigation plus 150 kg N ha⁻¹. There was a 51 % increase in the weighed mean absolute growth rate (WMAGR) by full irrigation over no irrigation. The maximum growth rates (MGR) followed a similar response. The growth rates were not significantly decreased by double irrigation. Further, N fertilizer did not significantly improve crop growth rates. With full irrigation MGRs were 27.6 and 34.1 g m⁻² day⁻¹ for Kabuli chickpea and narrow-leafed lupin, respectively. Seed yields of fully-irrigated crops were trebled over the nil irrigation treatment. With full irrigation, seed yield of chickpea was 326 and that of lupin was 581 g m⁻². Seed yield of the two legumes was reduced by 45 % with double irrigation compared with full irrigation. Nitrogen fertilizer did not increase seed yields in either legume. Increased seed yield with full irrigation was related to increased DM, and crop growth rates, seeds pod⁻¹ and seeds m⁻². Crop harvest index (CHI) was significantly (P < 0.05) increased by irrigation and was related to seed yield only in narrow-leafed lupin. With full irrigation, the crops intercepted more than 95 % of incoming incident radiation at leaf area indices (LAIs), 2.9 and 3 or greater in Kabuli chickpea and narrow-leafed lupin, respectively. In contrast, without irrigation the two legumes achieved a maximum fraction of radiation intercepted of less than 90 %. With full irrigation, total intercepted photosynthetically active radiation (PAR) was increased by 28 % and 33 % over no irrigation for Kabuli chickpea and narrow-leafed lupin, respectively. Fully-irrigated Kabuli chickpea intercepted a total amount of PAR of 807 MJ m⁻² and fully-irrigated narrow-leafed lupin intercepted 1,042 MJ m⁻². Accumulated DM was strongly related to accumulated intercepted PAR (R² ≥ 0.96**). The final RUE was significantly (P < 0.001) increased by irrigation. With full irrigation the final RUE of Kabuli chickpea was 1.49 g DM MJ⁻¹ PAR and that of narrow-leafed lupin was 2.17 g DM MJ⁻¹ PAR. Total N accumulation of Kabuli chickpea was not significantly affected by irrigation level. Kabuli chickpea total N was increased by 90 % by N fertilizer compared to fully-irrigated Kabuli chickpea which produced 17.7 g N m⁻². In contrast, total N accumulated in narrow-leafed lupin was not increased by N fertilizer but was decreased by 75 % with no irrigation and by 25 % with double irrigation (water logging) compared to full irrigation with a total N of 45.9 g m⁻². Total N was highly significantly related to TDM (R² = 0.78** for Kabuli chickpea and R² = 0.99** for narrow-leafed lupin). Nitrogen accumulation efficiency (NAE) of narrow-leafed lupin was not affected by irrigation or by N fertilizer. However, the NAE of Kabuli chickpea ranged from 0.013 (full irrigation) to 0.020 (no irrigation) and 0.017 g N g⁻¹ DM (full irrigation with N fertilizer). The N harvest index (NHI) was not affected by irrigation, N fertilizer or legume species. The NHI of Kabuli chickpea was 0.50 and that of narrow-leafed lupin was 0.51. The NHI was significantly (r ≥ 0.95 **) related to CHI.
APA, Harvard, Vancouver, ISO, and other styles
5

Stephany, Michael [Verfasser]. "Influence of endogenous enzyme activities on odour-active compound formation in sweet lupin (Lupinus angustifolius L.) / Michael Stephany." Aachen : Shaker, 2016. http://d-nb.info/1104047055/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rahman, Mohammed Habibur. "Chemical and nutritional evaluation of Lupinus angustifolius L. (sweet lupin) seed proteins and its fractions on general metabolism of monogastric animals." Thesis, University of Aberdeen, 1993. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU539954.

Full text
Abstract:
The use of lupin seed, although a rich source of proteins, has been limited by the presence of toxic alkaloids. Recently a sweet, non toxic variety (it Lupinus angustifolius L.) has been developed in Western Australia, and reported to be safe for human consumption. However growth depression and low net protein utilisation (NPU) values in weanling rats fed raw L. angustifolius seeds have been reported in the literature. Thus seeds were analysed, and experiments were carried out with rats to evaluate NPU values and growth. Results indicated that L. angustifolius contains a far less reactive lectin than kidney bean, but that food intake and growth were depressed, due in part to essential amino acids (EAA) deficiencies. Supplementation with EAA improved growth, nitrogen retention and protein utilisation. However, when compared with that of the net protein utilisation values from rats fed on lactalbumin, the raw lupin seed meal was still found to be inferior, even when supplemented with EAA. Seed meal was fractionated into six components by sequential extraction with cold water, McIlvaine's buffer at pH 7.0, and dialysis of the supernatant. Analyses were carried out on lupin seed meal and fractions for carbohydrates, amino acids, oligosaccharides, minerals, phytates and run on SDS/PAGE to ensure consistency in fractions pooled for nitrogen balance experiments. It was revealed that a protein fraction resembling the gamma-conglutin, the simplest of the three globulins from the seeds of L.angustifolius, was extracted in almost pure form. A series of experiments was carried out to study the biological effects of all six fractions in growing rats. Results showed that seed meal and its fractions are unique in causing deleterious effects on liver, kidneys, spleen, thymus, heart, adrenal, stomach, caecum and colon but had no effects on pancreas.
APA, Harvard, Vancouver, ISO, and other styles
7

Pötzsch, Fredo Frank. "Schwefelbedarf, -akkumulation und -düngung von Ackerbohne (Vicia faba L.), Schmalblättriger Lupine (Lupinus angustifolius L.) und Erbse (Pisum sativum L.) in Reinsaat sowie Erbse und Gerste (Hordeum vulgare L.) im Gemenge." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20908.

Full text
Abstract:
Ziel der vorliegenden Arbeit war es, den Einfluss verschiedener Schwefel (S)-Düngemittel, der Leguminosenart und des Gemengebaus von Erbse (Pisum sativum L.) und Gerste (Hordeum vulgare L.) auf die Schwefelakkumulation sowie den Ertrag der Ackerbohne (Vicia faba L.), Schmalblättrige Lupine (Lupinus angustifolius L.) und Erbse zu erheben. In den Jahren 2012 bis 2014 wurden Feldversuche auf zahlreichen Standorten durchgeführt, um die Wirkung von Kieserit (MgSO4), Gips (CaSO4), elementarem S und Bittersalz (MgSO4 × 7H2O) auf die Körnerleguminosen zu testen. Die Düngung von Ackerbohne, Schmalblättriger Lupine und Erbse mit verschiedenen S-haltigen Düngemitteln führte unter den geprüften Feldbedingungen weder zu Ertragssteigerungen noch zu einer gesteigerten N-Akkumulation. Der S-Bedarf der drei Körnerlegunminosen wurde offenbar über natürliche Ressourcen gedeckt. Trotzdem zeigten sich Gips und Kieserit, teilweise auch Bittersalz als geeignete Düngemittel, um die S-Konzentration im Gewebe der Pflanzen zu erhöhen. Die S-Akkumulation im Spross der Ackerbohne (5-17 kg S ha-1), Schmalblättrigen Lupine (5-15 kg S ha-1) und Erbse (2-13 kg S ha-1) war gering und wurde von den Pflanzen an deren Bedarf angepasst. Im Gegensatz zu Ackerbohne (SHI 0,65) und Erbse (SHI 0,63), die S vorwiegend im Korn akkumulierten, sammelte die Schmalblättrige Lupine einen Großteil des aufgenommenen S im Stroh (SHI 0,40) an. Der Einfluss des Gemengeanbaus mit Gerste auf den S-Haushalt der Erbse war sehr gering. Die Erbse in Reinsaat nahm signifikant mehr S gemittelt über alle getesteten Düngemittel auf als das Gemenge aus Erbse und Gerste. Erbse und Gerste akkumulierten ähnlich hohe Mengen S im Spross pro Einheit Kornertrag. Um maximale Kornerträge sowie N- und S-Akkumulationen in einem substitutiv zusammengesetzten Gemenge aus Erbse und Gerste zu erzielen, wurde ein optimales Saatverhältnis von 42-88% keimfähiger Erbsensamen zu 12-58% keimfähigen Gerstensamen der jeweiligen Reinsaatstärke ermittelt.
The objectives of this study were to evaluate the influence of different sulfur (S) containing fertilizers, the legume species and of intercropping of pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on sulfur accumulation and yield of faba bean (Vicia faba L.), narrow leaf lupin (Lupinus angustifolius L.) and pea. In the years 2012 to 2014 field trials have been conducted to test the effects of kieserite (MgSO4), gypsum (CaSO4), elemental S and epsom salt (MgSO4 × 7H2O) on grain legumes at several sites in Germany. Under the given environmental conditions, fertilization of faba bean, narrow leaf lupin and pea with different S containing fertilizers did not increase yield and nitrogen (N) accumulation. The S demand of the three grain legumes was low and obviously covered by S sources from the soil as well as atmospheric S deposition. However, gypsum, kieserite and epsom salt generated noticeable increases in S concentration in parts of the plants. S accumulation in shoots of faba bean (5-17 kg S ha-1), narrow leaf lupin (5-15 kg S ha-1) and pea (2-13 kg S ha-1) was comparatively low and has been adapted to the plants respective S demand. In contrast to faba bean (SHI 0,65) and pea (SHI 0,63), who accumulated S predominantly in seeds, narrow leaf lupin (SHI 0,40) accumulated the bulk of S in its straw. The influence of barley on peas S concentration was very low. Pea in pure stands accumulated significantly more S than the total intercrop of pea and barley, whereas pea and barley accumulated similar amounts of S in its shoots per unit seed yield. To achieve the maximum seed yield and maximum N and S accumulation in substitutive mixtures of pea and barley, a relative seed frequency of 42%–88% pea seeds to 12%–58% barley seeds of their monocrop seeding rate has been calculated to be optimal.
APA, Harvard, Vancouver, ISO, and other styles
8

Sußmann, Daniela [Verfasser]. "Prozessoptimierung zur Isolierung von Proteinen aus Lupinus angustifolius L. cv. Vitabor und deren Potential als natürliches Fettsubstitut / Daniela Sußmann. Landwirtschaftliche Fakultät." Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/1018829482/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muranyi, Isabel [Verfasser], Peter [Akademischer Betreuer] Köhler, Peter [Gutachter] Köhler, and Thomas [Gutachter] Becker. "Properties of protein isolates from lupin (Lupinus angustifolius L.) as affected by the isolation method / Isabel Muranyi ; Gutachter: Peter Köhler, Thomas Becker ; Betreuer: Peter Köhler." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1150852089/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pötzsch, Fredo Frank [Verfasser], Knut [Gutachter] Schmidtke, and Timo [Gutachter] Kautz. "Schwefelbedarf, -akkumulation und -düngung von Ackerbohne (Vicia faba L.), Schmalblättriger Lupine (Lupinus angustifolius L.) und Erbse (Pisum sativum L.) in Reinsaat sowie Erbse und Gerste (Hordeum vulgare L.) im Gemenge / Fredo Frank Pötzsch ; Gutachter: Knut Schmidtke, Timo Kautz." Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1202036902/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Buckeridge, Marcos Silveira. "A novel #beta#-galactosidase or exo-(1-4)-#beta#-galactanase from the cotyledons of germinated Lupinus angustifolius L seeds, and its role in post-germinative cell wall metabolism." Thesis, University of Stirling, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kapal, Debbie B. "Influence of a legume green manure crop on barley straw/stubble decomposition, and soil nitrogen retention and availability." Lincoln University, 2008. http://hdl.handle.net/10182/701.

Full text
Abstract:
The incorporation of cereal straw/stubble often immobilises nitrogen (N). This can help conserve N in soil in organic forms, thus reducing loss through leaching over dormant winter periods. However, N-depressions that arise during decomposition can reduce crop yield. The inclusion of a legume green manure can supply fixed-N, thus alleviating the low N availability to crops. In this study, the effect of lupin (Lupinus angustifolius L.) green manure incorporation on barley (Hordeum vulgare L.) straw/stubble decomposition, and N availability was investigated. A field experiment was used to determine the effects of the green manure on decomposition. Decomposition of straw/stubble was monitored using the litterbag technique. Following green manure incorporation, soil cores were incubated in a glasshouse to determine mineral-N availability. Though not significant, the inclusion of lupin green manure seemed to increase the decomposition of straw/stubble during the growth period, then slowing it after its incorporation at 110 d. This was described by a logarithmic pattern of loss of - 4.97 g AFDW residue day⁻¹, with 60% remaining after 140 d. Treatments without lupin had a linear decomposition of - 0.12 g AFDW residue day⁻¹, with 49% remaining after 140 d. The loss of cellulose confirmed the differences in decomposition with the inclusion of lupin resulting in 2.79% less cellulose remaining in straw/stubble after 140 d compared to its exclusion. Lupin significantly increased pot oat N uptake and DM yield by 55 % and 46 %, respectively, compared to its exclusion. However, this effect was not observed in field sown wheat yields and the soil mineral-N measurements made. This study showed that the potential of lupin to increase straw/stubble decomposition by improving the retention and availability of N, leading to long-term yield benefits, needed further investigation.
APA, Harvard, Vancouver, ISO, and other styles
13

Stark, Christine. "Effects of long- and short-term crop management on soil biological properties and nitrogen dynamics." Phd thesis, Lincoln University. Agriculture and Life Sciences Division, 2005. http://theses.lincoln.ac.nz/public/adt-NZLIU20070220.010748/.

Full text
Abstract:
To date, there has been little research into the role of microbial community structure in the functioning of the soil ecosystem and on the links between microbial biomass size, microbial activity and key soil processes that drive nutrient availability. The maintenance of structural and functional diversity of the soil microbial community is essential to ensure the sustainability of agricultural production systems. Soils of the same type with similar fertility that had been under long-term organic and conventional crop management in Canterbury, New Zealand, were selected to investigate relationships between microbial community composition, function and potential environmental impacts. The effects of different fertilisation strategies on soil biology and nitrogen (N) dynamics were investigated under field (farm site comparison), semi-controlled (lysimeter study) and controlled (incubation experiments) conditions by determining soil microbial biomass carbon (C) and N, enzyme activities (dehydrogenase, arginine deaminase, fluorescein diacetate hydrolysis), microbial community structure (denaturing gradient gel electrophoresis following PCR amplification of 16S and 18S rDNA fragments using selected primer sets) and N dynamics (mineralisation and leaching). The farm site comparison revealed distinct differences between the soils in microbial community structure, microbial biomass C (conventional > organic) and arginine deaminase activity (organic > conventional). In the lysimeter study, the soils were subjected to the same crop rotation (barley (Hordeum vulgare L.), maize (Zea mays L.), rape (Brassica napus L. ssp. oleifera (Moench)) plus a lupin green manure (Lupinus angustifolius L.) and two fertiliser regimes (following common organic and conventional practice). Soil biological properties, microbial community structure and mineral N leaching losses were determined over 2½ years. Differences in mineral leaching losses were not significant between treatments (total organic management: 24.2 kg N per ha; conventional management: 28.6 kg N per ha). Crop rotation and plant type had a larger influence on the microbial biomass, activity and community structure than fertilisation. Initial differences between soils decreased over time for most biological soil properties, while they persisted for the enzyme activities (e.g. dehydrogenase activity: 4.0 and 2.9 µg per g and h for organic and conventional management history, respectively). A lack of consistent positive links between enzyme activities and microbial biomass size indicated that similarly sized and structured microbial communities can express varying rates of activity. In two successive incubation experiments, the soils were amended with different rates of a lupin green manure (4 or 8t dry matter per ha), and different forms of N at 100 kg per ha (urea and lupin) and incubated for 3 months. Samples were taken periodically, and in addition to soil biological properties and community structure, gross N mineralisation was determined. The form of N had a strong effect on microbial soil properties. Organic amendment resulted in a 2 to 5-fold increase in microbial biomass and enzyme activities, while microbial community structure was influenced by the addition or lack of C or N substrate. Correlation analyses suggested treatment-related differences in nutrient availability, microbial structural diversity (species richness or evenness) and physiological properties of the microbial community. The findings of this thesis showed that using green manures and crop rotations improved soil biology in both production systems, that no relationships existed between microbial structure, enzyme activities and N mineralisation, and that enzyme activities and microbial community structure are more closely associated with inherent soil and environmental factors, which makes them less useful as early indicators of changes in soil quality.
APA, Harvard, Vancouver, ISO, and other styles
14

Stark, Christine H. "Effects of long- and short-term crop management on soil biological properties and nitrogen dynamics." Lincoln University, 2005. http://hdl.handle.net/10182/30.

Full text
Abstract:
To date, there has been little research into the role of microbial community structure in the functioning of the soil ecosystem and on the links between microbial biomass size, microbial activity and key soil processes that drive nutrient availability. The maintenance of structural and functional diversity of the soil microbial community is essential to ensure the sustainability of agricultural production systems. Soils of the same type with similar fertility that had been under long-term organic and conventional crop management in Canterbury, New Zealand, were selected to investigate relationships between microbial community composition, function and potential environmental impacts. The effects of different fertilisation strategies on soil biology and nitrogen (N) dynamics were investigated under field (farm site comparison), semi-controlled (lysimeter study) and controlled (incubation experiments) conditions by determining soil microbial biomass carbon (C) and N, enzyme activities (dehydrogenase, arginine deaminase, fluorescein diacetate hydrolysis), microbial community structure (denaturing gradient gel electrophoresis following PCR amplification of 16S and 18S rDNA fragments using selected primer sets) and N dynamics (mineralisation and leaching). The farm site comparison revealed distinct differences between the soils in microbial community structure, microbial biomass C (conventional>organic) and arginine deaminase activity (organic>conventional). In the lysimeter study, the soils were subjected to the same crop rotation (barley (Hordeum vulgare L.), maize (Zea mais L.), rape (Brassica napus L. ssp. oleifera (Moench)) plus a lupin green manure (Lupinus angustifolius L.) and two fertiliser regimes (following common organic and conventional practice). Soil biological properties, microbial community structure and mineral N leaching losses were determined over 2½ years. Differences in mineral leaching losses were not significant between treatments (total organic management: 24.2 kg N ha⁻¹; conventional management: 28.6 kg N ha⁻¹). Crop rotation and plant type had a larger influence on the microbial biomass, activity and community structure than fertilisation. Initial differences between soils decreased over time for most biological soil properties, while they persisted for the enzyme activities (e.g. dehydrogenase activity: 4.0 and 2.9 µg g⁻¹ h⁻¹ for organic and conventional management history, respectively). A lack of consistent positive links between enzyme activities and microbial biomass size indicated that similarly sized and structured microbial communities can express varying rates of activity. In two successive incubation experiments, the soils were amended with different rates of a lupin green manure (4 or 8t dry matter ha⁻¹), and different forms of N at 100 kg ha⁻¹ (urea and lupin) and incubated for 3 months. Samples were taken periodically, and in addition to soil biological properties and community structure, gross N mineralisation was determined. The form of N had a strong effect on microbial soil properties. Organic amendment resulted in a 2 to 5-fold increase in microbial biomass and enzyme activities, while microbial community structure was influenced by the addition or lack of C or N substrate. Correlation analyses suggested treatment-related differences in nutrient availability, microbial structural diversity (species richness or evenness) and physiological properties of the microbial community. The findings of this thesis showed that using green manures and crop rotations improved soil biology in both production systems, that no relationships existed between microbial structure, enzyme activities and N mineralisation, and that enzyme activities and microbial community structure are more closely associated with inherent soil and environmental factors, which makes them less useful as early indicators of changes in soil quality.
APA, Harvard, Vancouver, ISO, and other styles
15

STÝBLOVÁ, Jiřina. "Hodnocení úpravy a zpracování semen vybraných luskovin na produkci bílkovinných koncentrátů." Master's thesis, 2010. http://www.nusl.cz/ntk/nusl-80736.

Full text
Abstract:
This diploma work was assessed effects of different seed treatment (untreated flour from whole seed, flour from the uterus after soaking seeds, flour from the seeds sprouted cotyledon) by three species of legumes (Pisum sativum conv. Sativum L., Vicia faba L., Lupinus angustifolius L.) yield and composition of protein isolate obtained by isoelectric precipitation. It was found that the seeds of change most affects yield precipitated N (mg) and 45%. When determining the value of the yield of protein was affected by significant interactions (treatment and the type of legume seeds). The largest share was, however, precipitate in untreated and germinated lupine seeds, in which values are around 57%. Furthermore, the thesis was to reverse the precipitation of proteins, using which we obtained protein concentrates from different species of legumes. The yields of protein concentrates reach values in the range of 60-80%. Spectra of soluble proteins is clearly visible high concentration of isolated proteins. Variation of sprouted seeds and soaked that occurred during treatment of seeds for the collapse of proteins with higher molecular weight. Furthermore, these grafts are transferred protein extraction at pH 9.0 in the later produced protein isolates. After acid precipitation is observed on a spectrum that is re-soluble protein isolates.
APA, Harvard, Vancouver, ISO, and other styles
16

MAREK, Josef. "Hodnocení vlivu klíčení na profily zásobních bílkovin v semenech vybraných druhů luskovin." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-170429.

Full text
Abstract:
The aim of the diploma thesis was to assess changes in pattern of legume storage proteins during germination. Four species of legumes were chosen for analyses ? Glycine max L., Lupinus angustifolius L., Pisum sativum L. and Vicia faba L. Seeds for analyses were sampled at the beginning, middle and end of germination. Proteins were extracted from lyophilised and homogenised material. These proteins were analysed by SDS-PAGE electrophoresis. The results proved that during seed germination the seed storage proteins cleave into smaller peptides, which forms new proteins. The intensity of protein bands in pea seeds was decreased in the area at around 48-45 kda and 40-36 kDa and the intensity of the proteins bands was increased at around the protein bands 25-23 kDa and 19-7 kDa. In lupine were not detected the protein bands over 39 kDa and during germination amount of protein bands in areas 15-7 kDa was increased
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography