Academic literature on the topic 'Lung epithelial barrier function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lung epithelial barrier function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lung epithelial barrier function"
Brune, Kieran, James Frank, Andreas Schwingshackl, James Finigan, and Venkataramana K. Sidhaye. "Pulmonary epithelial barrier function: some new players and mechanisms." American Journal of Physiology-Lung Cellular and Molecular Physiology 308, no. 8 (April 15, 2015): L731—L745. http://dx.doi.org/10.1152/ajplung.00309.2014.
Full textAghapour, Mahyar, Alexander H. V. Remels, Simon D. Pouwels, Dunja Bruder, Pieter S. Hiemstra, Suzanne M. Cloonan, and Irene H. Heijink. "Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease." American Journal of Physiology-Lung Cellular and Molecular Physiology 318, no. 1 (January 1, 2020): L149—L164. http://dx.doi.org/10.1152/ajplung.00329.2019.
Full textHollenhorst, Monika I., Katrin Richter, and Martin Fronius. "Ion Transport by Pulmonary Epithelia." Journal of Biomedicine and Biotechnology 2011 (2011): 1–16. http://dx.doi.org/10.1155/2011/174306.
Full textHerrero, Raquel, Mishie Tanino, Lincoln S. Smith, Osamu Kajikawa, Venus A. Wong, Steve Mongovin, Gustavo Matute-Bello, and Thomas R. Martin. "The Fas/FasL pathway impairs the alveolar fluid clearance in mouse lungs." American Journal of Physiology-Lung Cellular and Molecular Physiology 305, no. 5 (September 1, 2013): L377—L388. http://dx.doi.org/10.1152/ajplung.00271.2012.
Full textKim, Kwang-Jin, and Asrar B. Malik. "Protein transport across the lung epithelial barrier." American Journal of Physiology-Lung Cellular and Molecular Physiology 284, no. 2 (February 1, 2003): L247—L259. http://dx.doi.org/10.1152/ajplung.00235.2002.
Full textBao, Shenying, and Daren L. Knoell. "Zinc modulates cytokine-induced lung epithelial cell barrier permeability." American Journal of Physiology-Lung Cellular and Molecular Physiology 291, no. 6 (December 2006): L1132—L1141. http://dx.doi.org/10.1152/ajplung.00207.2006.
Full textWu, Huijuan, and Nan Tang. "Stem cells in pulmonary alveolar regeneration." Development 148, no. 2 (January 15, 2021): dev193458. http://dx.doi.org/10.1242/dev.193458.
Full textOvergaard, Christian E., Barbara Schlingmann, StevenClaude Dorsainvil White, Christina Ward, Xian Fan, Snehasikta Swarnakar, Lou Ann S. Brown, David M. Guidot, and Michael Koval. "The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function." American Journal of Physiology-Lung Cellular and Molecular Physiology 308, no. 12 (June 15, 2015): L1212—L1223. http://dx.doi.org/10.1152/ajplung.00042.2014.
Full textMitchell, Leslie A., Christian E. Overgaard, Christina Ward, Susan S. Margulies, and Michael Koval. "Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function." American Journal of Physiology-Lung Cellular and Molecular Physiology 301, no. 1 (July 2011): L40—L49. http://dx.doi.org/10.1152/ajplung.00299.2010.
Full textIshii, Mitsutoshi, Tomoshi Tsuchiya, Ryoichiro Doi, Yoichi Morofuji, Takashi Fujimoto, Hideki Muto, Takashi Suematsu, et al. "Increased In Vitro Intercellular Barrier Function of Lung Epithelial Cells Using Adipose-Derived Mesenchymal Stem/Stromal Cells." Pharmaceutics 13, no. 8 (August 16, 2021): 1264. http://dx.doi.org/10.3390/pharmaceutics13081264.
Full textDissertations / Theses on the topic "Lung epithelial barrier function"
Zhai, Ruoyang. "Effects of sevoflurane in the treatment of Acute Respiratory Distress Syndrome : a translational approach." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0077.
Full textAcute respiratory distress syndrome (ARDS) is a major cause of respiratory failurewith a high mortality rate. It is characterized by diffuse alveolar damage, alveolar edema, and hypoxemic respiratory loss which cause heavy healthcare costs. Currently, available treatments for ARDS remain primarily supportive, and no pharmacological approach is successfully translated into clinical application. There are two major processes during the physiopathological development of ARDS that lead to the formation of lung edema:alveolar barrier dysfunction and the impairment of alveolar fluid clearance following alveolar epithelial injury and inflammation. The receptor for advanced glycation end products (RAGE) was indicated to be involved during those processes, with the high potential of its soluble form as a biomarker for ARDS diagnostic and prognostic. Volatile halogenated agents, such as sevoflurane or isoflurane, are increasingly used in intensive care units as sedative agents with their ideal intrinsic characteristics as a sedative. Furthermore, numerous pre-clinical and clinical studies indicate its lung protective effects for ARDS patients.However, its mechanisms of such beneficial effects remain to be clarified.The main objectives of this thesis work are multiple, through experimental andtranslational in vivo and in vitro models of ARDS, to1) Asses the beneficial lung protective effects of sevoflurane in ARDS, including its effects on ARDS physiological features, lung fluid clearance, and alveolar permeability.2) Investigate the precise mechanism of observed effects of sevoflurane, including mechanistic studies and involved proteins' function and expression.3) Explore the role of RAGE in lung epithelial injury and repair and its eventualmediation role of the beneficial effects of sevoflurane.During this thesis work, we advanced from many angles: First, our work found in ourA549 cells wound healing model, the important role of RAGE in the lung injury repairprocess, as its ligand, HMGB1, and AGEs promoted RAGE-dependent wound healing oflung alveolar epithelial cells, which is possible through enhanced cell migration and proliferation.Secondly, our work in murine in vitro and in vivo ARDS models, animprovement of experimental features, with decreased indices of permeability and preserved epithelial structures in cells and mice, by at least in a part, increasing expression of ZO-1 and the inhibition of RhoA activity and pMLC as well as actin cytoskeleton rearrangement following lung epithelial injury. Additionally, RAGE may play a mediating role in the effects of sevoflurane on acute lung injury. Furthermore, our work in porcine in vivo ARDS models confirmed the lung protective effects of sevoflurane on ARDS features, with improved oxygenation, restored alveolar permeability, and improved AFC. Our study suggests theprotective effect of sevoflurane on AFC may be explained by the restoration of impaired lung expression of epithelial channels AQP-5, Na, K, ATPase, and ENaC during ARDS.Taken together, this thesis work explained more precisely the protective effects ofhalogenated agents and the new revelation of its potential mechanism, and hence supports the high interest in the use of inhaled sedation in intensive care for ARDS patients. This work may give some new insights for research on the effects of sevoflurane on ARDS and its resolution.Keywords: Acute respiratory distress syndrome; Sevoflurane; Lung epithelial barrierfunction; Lung wound repair; Alveolar fluid clearance; Epithelial channels: Junction proteins;Intracellular pathways; Receptor for advanced glycation end-products
Bueti, Deanna. "Immunomodulatory cytokines regulate intestinal epithelial barrier function /." Title page and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09SB/09sbb9289.pdf.
Full textKraft, Martin Rolf. "Giardia duodenalis - epithelial interaction and barrier function." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21045.
Full textThe protozoan parasite Giardia duodenalis is the etiological agent for the intestinal diarrheal disease giardiasis. Infections are acquired via the fecal-oral route, mostly via uptake of cysts from contaminated drinking water. The colonization of the hosts’ duodenum and upper jejunum and the attachment of Giardia trophozoites onto the epithelium is the cause of a variety of gastrointestinal complaints but the exact pathomechanisms are unknown. Furthermore, the outcome of Giardia infections varies greatly between individuals, ranging from self-limiting to chronic, and asymptomatic to severe enteritis. One proposed mechanism for the pathogenesis is the breakdown of intestinal barrier function, e.g. by tight junction impairment or induction of cell death. In this work, effects of G. duodenalis on in vitro models of the human small intestinal epithelium were investigated by studying mainly barrier-related properties and changes of widely used Caco-2 cells as well as newly established human small intestinal organoid-derived monolayers (ODMs). It could be shown that several isolates of G. duodenalis, some described as highly virulent, fail to induce barrier dysfunction or any other investigated pathological effect on two Caco-2 cell lines under various infection and culturing conditions. On the other side, by developing a new organoid-based model system and the use of luminal mock medium TYI-S-33, considerable epithelial disruption (including loss of cells), cell death (apoptosis and non-apoptotic), tight junction impairment (degradation and dislocation of claudins and ZO-1), and microvilli depletion reproducibly induced by G. duodenalis trophozoites between one and two days after infection could be observed. Moreover, emergence of ClCa-1 positive cells with ongoing parasite infections suggest epithelial differentiation or metaplasia towards goblet cells, which is furthermore not associated to tissue damage.
Baker, Sarah Elizabeth. "Epithelial Sodium Channel Polymorphism Influences Lung Function." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306770.
Full textBeltinger, Johannes Hermann. "Studies on colonic epithelial ion transport and barrier function." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311747.
Full textWillemsen, Linette Eustachia Maria. "Intestinal barrier function: regulation of epithelial permeability and mucin expression." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/74526.
Full textGlymenaki, Maria. "The role of gut flora in epithelial barrier function and immunity." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/the-role-of-gut-flora-in-epithelial-barrier-function-and-immunity(6cb0ca1e-06ff-4cd4-a0a1-76ace6af2a55).html.
Full textRoux, Jérémie. "Function of the epithelial sodium channel ENaC in acute lung injury." Nice, 2005. http://www.theses.fr/2005NICE4010.
Full textThe objective of this thesis is to investigate the role of abnormalities in alveolar epithelial ion channel function in the pathogenesis of acute lung injury. Clinical studies have demonstrated that impaired alveolar fluid clearance associated with the release of inflammatory mediators within the distal airspace of the lung is a characteristic feature of acute lung injury. Therefore, we examined the potential effect of these mediators on ion transport across the alveolar epithelium. In the first study, we demonstrated that increased transforming growth factor -b1 (TGF-b1) activity in distal airspaces during acute lung injury promoted pulmonary edema by reducing alveolar epithelial sodium and fluid transport. In the second study we showed that in alveolar epithelial cells, interleukin -1b (IL-1b) activated TGF-b1 via an integrin avb6-dependent mechanism. Finally in the last study, we demonstrated that IL-1b could also directly and independently reduce the alveolar epithelial sodium and fluid transport. The reduction in fluid transport was shown to be attributable in large part to a decrease in apical membrane expression of the epithelial sodium channel (ENaC) in lung epithelial cells. The decreased cell surface expression of ENaC was mediated through a MAP kinase-dependent inhibition of ENaC promoter activity. In summary, the studies presented here demonstrate that IL-1b and TGF-b1 down-regulate ENaC biosynthesis and indicate a critical role for these mediators in the impaired fluid clearance of patients with acute lung injury
Le, Nga Thi Thanh. "Regulation of Intestinal Epithelial Barrier and Immune Function by Activated T Cells." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1599833768774075.
Full textHU, Li-Li. "STAT3 in intestinal epithelial cells regulates barrier function and anti-bacterial response." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p1465075.
Full textTitle from first page of PDF file (viewed July 22, 2009). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 57-63).
Books on the topic "Lung epithelial barrier function"
E, Patterson Carolyn, ed. Perspectives on lung endothelial barrier function. Amsterdam: Elsevier, 2005.
Find full textPerspectives on Lung Endothelial Barrier Function. Elsevier, 2005. http://dx.doi.org/10.1016/s1569-2558(05)x3500-7.
Full textPatterson, C. E., and Edward Bittar. Perspectives on Lung Endothelial Barrier Function. Elsevier Science & Technology Books, 2004.
Find full textPatterson, C. E. Perspectives on Lung Endothelial Barrier Function, Volume 35 (Advances in Molecular and Cell Biology). Elsevier Science, 2005.
Find full text(Editor), Jorg-Dieter Schulzke, Michael Fromm (Editor), Ernst-Otto Riecken (Editor), and Henry J. Binder (Editor), eds. Epithelial Transport and Barrier Function: Pathomechanisms in Gastrointestinal Disorders (Annals of the New York Academy of Sciences). New York Academy of Sciences, 2001.
Find full textSchulzke, Jorg-Dieter. Epithelial Transport and Barrier Function: Pathomechanisms in Gastrointestinal Disorders (Annals of the New York Academy of Sciences, V. 915). New York Academy of Sciences, 2000.
Find full textElger, Marlies, and Wilhelm Kriz. The renal glomerulus. Edited by Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0043.
Full textSnell, Jamey, and Thomas J. Mancuso. Cystic Fibrosis. Edited by Kirk Lalwani, Ira Todd Cohen, Ellen Y. Choi, and Vidya T. Raman. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190685157.003.0023.
Full textHarrois, Anatole, and Jacques Duranteau. Pathophysiology of severe capillary leak. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0164.
Full textPatterson, Caroline, and Meg Coleman. Revision Notes for the Respiratory Medicine Specialty Certificate Examination. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199693481.001.0001.
Full textBook chapters on the topic "Lung epithelial barrier function"
Smith, Gideon P. "Normal Immune Function and Barrier: Epithelial Barrier." In Encyclopedia of Medical Immunology, 807–9. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-84828-0_267.
Full textMatthay, M. A., T. Nuckton, and B. Daniel. "Alveolar Epithelial Barrier: Acute Lung Injury." In Yearbook of Intensive Care and Emergency Medicine, 189–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-13455-9_17.
Full textStrengert, Monika, and Ulla G. Knaus. "Analysis of Epithelial Barrier Integrity in Polarized Lung Epithelial Cells." In Methods in Molecular Biology, 195–206. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-191-8_13.
Full textRios-Arce, Naiomy Deliz, Fraser L. Collins, Jonathan D. Schepper, Michael D. Steury, Sandi Raehtz, Heather Mallin, Danny T. Schoenherr, Narayanan Parameswaran, and Laura R. McCabe. "Epithelial Barrier Function in Gut-Bone Signaling." In Advances in Experimental Medicine and Biology, 151–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66653-2_8.
Full textMadara, James L., Shirin Nash, Ronda Moore, Michael Shapiro, Susan Carlson, and Charlene Delp. "Barrier Function of Intestinal Epithelial Tight Junctions (TJ)." In Inflammatory Bowel Diseases 1990, 27–33. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1980-8_4.
Full textAli, Shariq, and Erik Rytting. "Influences of Nanomaterials on the Barrier Function of Epithelial Cells." In Advances in Experimental Medicine and Biology, 45–54. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8739-0_3.
Full textKalifa, Lidza, and Michael A. O’Reilly. "The Impact of DNA Damage on Epithelial Cell Maintenance of the Lung." In Mitochondrial Function in Lung Health and Disease, 141–59. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0829-5_7.
Full textMatthay, M. A., G. Nitenberg, and C. Jayr. "The Critical Role of the Alveolar Epithelial Barrier in Acute Lung Injury." In Yearbook of Intensive Care and Emergency Medicine, 28–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79154-3_3.
Full textPaugh, Jerry R., Alan Sasai, and Abhay Joshi. "Preservative Effect on Epithelial Barrier Function Measured with a Novel Technique." In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2, 731–35. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5359-5_103.
Full textStefanski, Adrianne L., Dorota S. Raclawska, and Christopher M. Evans. "Modulation of Lung Epithelial Cell Function Using Conditional and Inducible Transgenic Approaches." In Methods in Molecular Biology, 169–201. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8570-8_14.
Full textConference papers on the topic "Lung epithelial barrier function"
Muizer, Kirsten, Maaike De Vries, Wim Timens, Maarten Van Den Berge, Alen Faiz, Tillie-Louise Hackett, Corry-Anke Brandsma, and Irene H. Heijink. "The effect of age on lung epithelial barrier function." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.oa2124.
Full textChen, Q., M. De Vries, M. Boezen, and I. Heijink. "The role of the COPD susceptibility gene FAM13A in barrier function and pro-inflammatory responses of human airway epithelial cells." In ERS Lung Science Conference 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/23120541.lsc-2020.59.
Full textLaFemina, Michael J., Trevor Bentley, Katherine Sutherland, Deepti Rokkam, Lennell Allen, Leland G. Dobbs, and James Frank. "A Role For Lung-Specific Tight Junction Protein Claudin-18 In Alveolar Epithelial Barrier Function." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6740.
Full textBoland, Helena, Endres Adrian, Hans Schwarzbach, Anke Burger-Kentischer, Danny Jonigk, Peter Braubach, Gernot Rohde, and Carla Bellinghausen. "Protective effect of interferon type I on barrier function of human airway epithelium during rhinovirus infections in vitro." In ERS Lung Science Conference 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/23120541.lsc-2022.92.
Full textBoland, H., A. Endres, A. Burger-Kentischer, D. Jonigk, P. Braubach, G. Rohde, and C. Bellinghausen. "Protective effect of interferon type I on barrier function of the human airway epithelium during rhinovirus infections in vitro." In ERS Lung Science Conference 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/23120541.lsc-2023.41.
Full textLaFemina, Michael J., Deepti Rokkam, Trevor M. Bentley, Michael A. Matthay, and James A. Frank. "Bronchoalveolar Lavage Fluid From Patients With Acute Lung Injury Alters Barrier Function In Primary Alveolar Epithelial Cell Monolayers." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5096.
Full textLarsson, M., K. Balogh Sivars, M. Forsgard, M. Parsson, and J. Hornberg. "MEK/ERK Inhibitors Affect Epithelial Barrier Function in Cells with Ongoing Active Repair Processes Indicating a Potential Hazard in Patients with Healing Lung." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5248.
Full textXiao, Cathy, Sarah A. Field, Joel Haywood, Victoria Broughton-Head, Nicole Bedke, Catherine Cremin, Stephen T. Holgate, Sarah M. Puddicombe, Phillip Monk, and Donna E. Davies. "Defective Epithelial Barrier Function In Asthma." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a6367.
Full textSidhaye, Venkataramana, Eric Chau, Patrick Breysse, and Landon S. King. "Particulate Matter Alters Airway Epithelial Barrier Function." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a6392.
Full textGreaney, A. M., M. S. B. Raredon, T. Adams, R. Langer, N. Kaminski, and L. E. Niklason. "Building Epithelial Barrier in Whole-lung Tissue Engineering." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a6159.
Full textReports on the topic "Lung epithelial barrier function"
Michael Anderson, Michael Anderson. Trans-epithelial Electrical Resistance (TEER) device to study the circadian rhythms of intestinal barrier function. Experiment, May 2023. http://dx.doi.org/10.18258/51202.
Full text