Dissertations / Theses on the topic 'LSTM Temporel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'LSTM Temporel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gaddari, Abdelhamid. "Analysis and Prediction of Patient Pathways in the Context of Supplemental Health Insurance." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10299.
Full textThis thesis work falls into the category of healthcare informatics research, specifically the analysis and prediction of patients’ care pathways, which are the sequences of medical services consumed by patients over time. Our aim is to propose an innovative approach for the exploitation of patient care trajectory data in order to achieve not only binary, but also multi-label classification. We also design a new sentence embedding framework exclusively for the french medical domain, which will harness another view of the patients’ care pathways in order to enhance the predictive performance of our proposed approach. Our research is part of the work of CEGEDIM ASSURANCES, a business unit of the CEGEDIM Group that provides software and services for the french supplementary healthcare insurance and risk management sectors. By analyzing the patient care pathway and leveraging our proposed approach, we can extract valuable insights and identify patterns within the patients’ medical journeys in order to predict potential medical events or upcoming medical consumption. This will allow insurers to forecast future healthcare claims and therefore negotiate better rates with healthcare providers, allowing for accurate financial planning, fair pricing models and cost reductions. Furthermore, it enables private healthcare insurers to design personalized health plans that meet the specific needs of the patients, ensuring they receive the right care at the right time to prevent disease progression. Ultimately, offering preventive care programs and customized health products and services enhances client relationship, improving their satisfaction and reducing churn. In this work, we aim to develop an approach to analyze patient care pathways and predict medical events or upcoming treatments, based on a large portfolio of reimbursed medical records. To achieve this goal, we first propose a new time-aware long-short term memory based framework that can achieve both binary and multi-label classification. The proposed framework is then extended with another aspect of the patient healthcare trajectories, namely additional information from a fuzzy clustering of the same portfolio. We show that our proposed approach outperforms traditional and deep learning methods in medical binary and multi-label prediction. Subsequently, we enhance the predictive performance of our proposed approach by exploiting a supplementary view of the patient care pathways that consists of a detailed textual description of the consumed medical treatments. This is achieved through the design of F-BERTMed, a new sentence embedding framework for the french medical domain that presents significant advantages over the natural language processing (NLP) state-of-the-art methods. F-BERTMed is based on FlauBERT, whose pre-training using MLM (Masked Language Modeling) was extended on french medical texts before being fine-tuned on NLI (Natural Language Inference) and STS (Semantic Textual Similarity) tasks. We finally show that using F-BERTMed to generate a new representation of the patient care pathways enhances the performance of our proposed medical predictive framework on both binary and multi-label classification tasks
Singh, Akash. "Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215723.
Full textVi undersöker Long short-term memory (LSTM) för avvikelsedetektion i tidsseriedata. På grund av svårigheterna i att hitta data med etiketter så har ett oövervakat an-greppssätt använts. Vi tränar rekursiva neuronnät (RNN) med LSTM-noder för att lära modellen det normala tidsseriemönstret och prediktera framtida värden. Vi undersö-ker olika sätt av att behålla LSTM-tillståndet och effekter av att använda ett konstant antal tidssteg på LSTM-prediktionen och avvikelsedetektionsprestandan. LSTM är också jämförda med vanliga neuronnät med fasta tidsfönster över indata. Våra experiment med tre verkliga datasetvisar att även om LSTM RNN är tillämpbara för generell tidsseriemodellering och avvikelsedetektion så är det avgörande att behålla LSTM-tillståndet för att få de önskaderesultaten. Dessutom är det inte nödvändigt att använda LSTM för enkla tidsserier.
Holm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Full textHudgins, Hayden. "Human Path Prediction using Auto Encoder LSTMs and Single Temporal Encoders." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2119.
Full textLindström, Per. "Deep Imitation Learning on Spatio-Temporal Data with Multiple Adversarial Agents Applied on Soccer." Thesis, Linköpings universitet, Databas och informationsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158076.
Full textCissoko, Mamadou Ben Hamidou. "Adaptive time-aware LSTM for predicting and interpreting ICU patient trajectories from irregular data." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD012.
Full textIn personalized predictive medicine, accurately modeling a patient's illness and care processes is crucial due to the inherent long-term temporal dependencies. However, Electronic Health Records (EHRs) often consist of episodic and irregularly timed data, stemming from sporadic hospital admissions, which create unique patterns for each hospital stay. Consequently, constructing a personalized predictive model necessitates careful consideration of these factors to accurately capture the patient's health journey and assist in clinical decision-making. LSTM networks are effective for handling sequential data like EHRs, but they face two significant limitations: the inability to interpret prediction results and to take into account irregular time intervals between consecutive events. To address limitations, we introduce novel deep dynamic memory neural networks called Multi-Way Adaptive and Adaptive Multi-Way Interpretable Time-Aware LSTM (MWTA-LSTM and AMITA) designed for irregularly collected sequential data. The primary objective of both models is to leverage medical records to memorize illness trajectories and care processes, estimate current illness states, and predict future risks, thereby providing a high level of precision and predictive power
Mukhedkar, Dhananjay. "Polyphonic Music Instrument Detection on Weakly Labelled Data using Sequence Learning Models." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279060.
Full textPolyfonisk eller multipel musikinstrumentdetektering är ett svårt problem jämfört med att detektera enstaka eller soloinstrument i en ljudinspelning. Eftersom musik är tidsseriedata kan den modelleras med hjälp av sekvensinlärningsmetoder inom djup inlärning. Nyligen har ’Temporal Convolutional Network’ (TCN) visat sig överträffa konventionella ’Recurrent Neural Network’ (RNN) på flertalet sekvensmodelleringsuppgifter. Även om det har skett betydande förbättringar i metoder för djup inlärning, blir dataknapphet ett problem vid utbildning av storskaliga modeller. Svagt märkta data är ett alternativ där ett klipp kommenteras för närvaro av frånvaro av instrument utan att ange de tidpunkter då ett instrument låter. Denna studie undersöker hur TCN-modellen jämförs med en ’Long Short-Term Memory’ (LSTM) -modell medan den tränas i svagt märkta datasätt. Resultaten visade framgångsrik utbildning av båda modellerna tillsammans med generalisering i en separat datasats. Jämförelsen visade att TCN presterade bättre än LSTM, men endast marginellt. Därför kan man från de genomförda experimenten inte uttryckligen dra slutsatsen om TCN övertygande är ett bättre val jämfört med LSTM i samband med instrumentdetektering, men definitivt ett starkt alternativ.
Jain, Monika. "Regularized ensemble correlation filter tracking." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/229266/1/Monika_Jain_Thesis.pdf.
Full textRaminella, Marco. "Predizione real-time da dati di sensori impiantistici e ambientali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18643/.
Full textMax, Lindblad. "The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223966.
Full textDenna avhandling jämför två olika tillvägagångssätt vad gäller parsningen av händelsebaserad signaldata från fordon för att producera indata till en förutsägelsemodell i form av ett neuronnät, nämligen händelseparsning, där datan förblir ojämnt fördelad över tidsdomänen, och skivparsning, där datan är omgjord till att istället vara jämnt fördelad över tidsdomänen. Det dataset som används för dessa experiment är ett antal signalloggar från fordon som kommer från Scania. Jämförelser mellan parsningsmetoderna gjordes genom att först träna ett lång korttidsminne (LSTM) återkommande neuronnät (RNN) på vardera av de skapade dataseten för att sedan mäta utmatningsfelet och resurskostnader för varje modell efter att de validerats på en delad uppsättning av valideringsdata. Resultaten från dessa tester visar tydligt på att skivparsning står sig väl mot händelseparsning.
Tseng, Xuan-An, and 曾璿安. "Nested LSTM: Modeling Temporal Dynamics and Taxonomy in Location- Based Mobile Check-ins." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2x862f.
Full text國立清華大學
資訊工程學系所
106
``Is there any pattern in location-based, mobile check-in activities?'' ``If yes, is it possible to accurately predict the intention of a user's next check-in, given his/her check-in history?'' To answer these questions, we crawl and analyze probably the largest mobile check-in datasets, containing 20 million check-in activities from 0.4 million users. We provide two observations---`` work-n-relax'' and ``diurnal-n-nocturnal''---showing that the intentions of users' check-ins are strongly associated with time. Furthermore, the category of each check-in venue, which reveals users' intentions, has structure and forms taxonomy. In this paper, we propose Nested LSTM that takes both (a) check-in time and (b) taxonomy structure of venues from check-in sequences into consideration, providing accurate predictions on the category of a user's next check-in location. Nested LSTM also projects each category into an embedding space, providing a new representation with stronger semantic meanings. Experimental results are poised to demonstrate the effectiveness of the proposed Nested LSTM: (a) Nested LSTM improves Accuracy@5 by 4.22% on average, and (b) Nested LSTM learns a better taxonomy embedding for clustering categories, which improves Silhouette Coefficient by 1.5X. Both results (a)(b) are compared with LSTM-based, state-of-the-art approaches.
Huang, Yen-Cheng, and 黃彥誠. "Deep Neural Network with Attention Mechansim and LSTM for Temporal Information Exploration in Classification of Motor-Imagery EEG." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/94vys5.
Full text國立交通大學
資訊科學與工程研究所
107
The EEG signal is a medium to realize a brain-computer interface (BCI) system which help motor-disabled patients to communicate with the outside world by external devices. The problems associated with this task include recordings with a poor signal-to-noise ratio and contamination from external body movements, such as, muscle activity, blinking, and head movement. Considerable variability between subjects and recording sessions compounds the difficulty of this task, particularly when seeking to train a model using trials obtained from all of the subjects. Recently, there are works demonstrating the postive outcome using CNN in task of motor-imagery classification. This paper outlines two novel neural network architecture for the classification of motor imagery EEG recordings using deep learning techniques. One of proposed methods comprises an attention mechanism, the another model is CNN equipped with LSTM. The attenion mechanism in the former model calculating the importance of each electrode; the LSTM in the latter model used for finding the temporal information within features. Compared to the results obtained using a variety of state-of-the-art deep learning techniques, the proposed scheme represents a considerable advancement in classification accuracy when applied to the BCI Competition IVdataset IIa, reaching accuracy 85.2%. Besides, when the proposed models were applied to motor-imagery EEG data collected in this work, the models yielded better results compared to pure CNN model by 9.2%. Asides from comparing the accuracy to effectiveness of the proposed models, we also determine that the attention mechanism mentioned above performs the same process as CSP and common temporal pattern (CTP), wherein inputs from all classes are projected onto a similar coordinate system considered the optimal space for classification. Moreover, through power-feature corrlation maps, visualzation of LSTM, and representation erasure determined by RL, we rationalize the semantic meanings behind operations of CNN as well as LSTM and, eventually, illustrate out two decisive factors of temporal features affecting the capability of LSTM in sequence modeling: (i) critical time range for classification and (ii) correct frequency range for event-related potential (ERP) which induces the activation of the features. These two factors could be indications for designing models consisted of CNN and RNN for processing other types of bio-signal which are also closely in relationship with ERP.
(9515447), Anamika Shreevastava. "Spatio-temporal characterization of fractal intra-Urban Heat Islets." Thesis, 2020.
Find full textPark, Hotaek, Takeshi Yamazaki, Kyoko Kato, Kazukiyo Yamamoto, and Takeshi Ohta. "Modeling spatio-temporal variations of energy and water fluxes in Eastern Siberia: An applicability of a lumped stomatal conductance parameter set by a land surface model." 2006. http://hdl.handle.net/2237/6897.
Full textMekuria, Elias Fekade. "Spatial and temporal analysis of recent drought using vegetation temperature condition index: case of Somali regional state of Ethiopia." Master's thesis, 2012. http://hdl.handle.net/10362/8317.
Full textThe semiarid and arid areas of the eastern part of Ethiopia have suffered a series of droughts and famines in the years 1999/2000, 2003/2004, 2007 and 2011. Absence/decline of rainfall in two of the rainy seasons locally called Dihra and Gu as being the major fact behind drought. Besides, lack of appropriate monitoring techniques aggravate the situation of drought in the study area. In a region where the numbers of meteorological stations are not sufficient enough to monitor the onset and extent of drought, remotely sensed data presents fast and economical way of information as the ground condition reflects the overall condition of rainfall and soil moisture. In this study, the drought monitoring approach is developed using Terra-MODIS Normalized Difference Vegetation index (NDVI) and Land surface Temperature (LST) level-3 products. The approach integrates the land surface reflectance and thermal properties as well as the NDVI changes to identify the extent and pattern of the past drought years. From the NDVI versus LST scatter plot, we extract Vegetation Temperature condition index (VTCI) to map the variability and trend of the drought years. The year 2003 was found to be the driest year (more than 90% of the region affected by drought) and the season that showed increasing intensity of drought being Dihra. The correlation (r > 0.7) between rainfall and VTCI across the major meteorological stations suggested that the index could be used as good indicator of drought as rainfall does. The overall trend of drought condition for selected drought years suggested that eastern and southern regions will experience more severe drought in the coming year. Moreover, VTCI value for October from 2000-2011 showed similar increase intensity of drought condition. In addition, it was observed that sparse vegetation and shrub land are highly variable and bare soil region is consistently dry. Wetter regions were found in the area where the elevation is above 1500m above sea level.