Academic literature on the topic 'LSTM Temporel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LSTM Temporel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LSTM Temporel"
Liu, Jun, Tong Zhang, Guangjie Han, and Yu Gou. "TD-LSTM: Temporal Dependence-Based LSTM Networks for Marine Temperature Prediction." Sensors 18, no. 11 (November 6, 2018): 3797. http://dx.doi.org/10.3390/s18113797.
Full textBaddar, Wissam J., and Yong Man Ro. "Mode Variational LSTM Robust to Unseen Modes of Variation: Application to Facial Expression Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 3215–23. http://dx.doi.org/10.1609/aaai.v33i01.33013215.
Full textD, Usha, Jesmalar L, Noorbasha Nagoor Meeravali, Mihirkumar B.Suthar, Rajeswari J, Pothumarthi Sridevi, and Vengatesh T. "Enhanced Dengue Fever Prediction in India through Deep Learning with Spatially Attentive LSTMs." Cuestiones de Fisioterapia 54, no. 2 (January 10, 2025): 3804–12. https://doi.org/10.48047/v3dm7y10.
Full textTao, Hong, Yue Deng, Yunqiu Xiang, and Long Liu. "Performance of long short-term memory networks in predicting athlete injury risk." Journal of Computational Methods in Sciences and Engineering 24, no. 4-5 (August 14, 2024): 3155–71. http://dx.doi.org/10.3233/jcm-247563.
Full textMajeed, Mokhalad A., Helmi Zulhaidi Mohd Shafri, Zed Zulkafli, and Aimrun Wayayok. "A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention." International Journal of Environmental Research and Public Health 20, no. 5 (February 25, 2023): 4130. http://dx.doi.org/10.3390/ijerph20054130.
Full textLin, Fei, Yudi Xu, Yang Yang, and Hong Ma. "A Spatial-Temporal Hybrid Model for Short-Term Traffic Prediction." Mathematical Problems in Engineering 2019 (January 14, 2019): 1–12. http://dx.doi.org/10.1155/2019/4858546.
Full textChen, Wantong, Hailong Wu, and Shiyu Ren. "CM-LSTM Based Spectrum Sensing." Sensors 22, no. 6 (March 16, 2022): 2286. http://dx.doi.org/10.3390/s22062286.
Full textTang, Qicheng, Mengning Yang, and Ying Yang. "ST-LSTM: A Deep Learning Approach Combined Spatio-Temporal Features for Short-Term Forecast in Rail Transit." Journal of Advanced Transportation 2019 (February 6, 2019): 1–8. http://dx.doi.org/10.1155/2019/8392592.
Full textGeng, Yue, Lingling Su, Yunhong Jia, and Ce Han. "Seismic Events Prediction Using Deep Temporal Convolution Networks." Journal of Electrical and Computer Engineering 2019 (April 2, 2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.
Full textVaseekaran S, Pragadeeswaran S, and Mrs S Janani. "Brain Tumour Prediction Using Temporal Memory." International Research Journal on Advanced Engineering Hub (IRJAEH) 3, no. 02 (February 20, 2025): 235–39. https://doi.org/10.47392/irjaeh.2025.0033.
Full textDissertations / Theses on the topic "LSTM Temporel"
Gaddari, Abdelhamid. "Analysis and Prediction of Patient Pathways in the Context of Supplemental Health Insurance." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10299.
Full textThis thesis work falls into the category of healthcare informatics research, specifically the analysis and prediction of patients’ care pathways, which are the sequences of medical services consumed by patients over time. Our aim is to propose an innovative approach for the exploitation of patient care trajectory data in order to achieve not only binary, but also multi-label classification. We also design a new sentence embedding framework exclusively for the french medical domain, which will harness another view of the patients’ care pathways in order to enhance the predictive performance of our proposed approach. Our research is part of the work of CEGEDIM ASSURANCES, a business unit of the CEGEDIM Group that provides software and services for the french supplementary healthcare insurance and risk management sectors. By analyzing the patient care pathway and leveraging our proposed approach, we can extract valuable insights and identify patterns within the patients’ medical journeys in order to predict potential medical events or upcoming medical consumption. This will allow insurers to forecast future healthcare claims and therefore negotiate better rates with healthcare providers, allowing for accurate financial planning, fair pricing models and cost reductions. Furthermore, it enables private healthcare insurers to design personalized health plans that meet the specific needs of the patients, ensuring they receive the right care at the right time to prevent disease progression. Ultimately, offering preventive care programs and customized health products and services enhances client relationship, improving their satisfaction and reducing churn. In this work, we aim to develop an approach to analyze patient care pathways and predict medical events or upcoming treatments, based on a large portfolio of reimbursed medical records. To achieve this goal, we first propose a new time-aware long-short term memory based framework that can achieve both binary and multi-label classification. The proposed framework is then extended with another aspect of the patient healthcare trajectories, namely additional information from a fuzzy clustering of the same portfolio. We show that our proposed approach outperforms traditional and deep learning methods in medical binary and multi-label prediction. Subsequently, we enhance the predictive performance of our proposed approach by exploiting a supplementary view of the patient care pathways that consists of a detailed textual description of the consumed medical treatments. This is achieved through the design of F-BERTMed, a new sentence embedding framework for the french medical domain that presents significant advantages over the natural language processing (NLP) state-of-the-art methods. F-BERTMed is based on FlauBERT, whose pre-training using MLM (Masked Language Modeling) was extended on french medical texts before being fine-tuned on NLI (Natural Language Inference) and STS (Semantic Textual Similarity) tasks. We finally show that using F-BERTMed to generate a new representation of the patient care pathways enhances the performance of our proposed medical predictive framework on both binary and multi-label classification tasks
Singh, Akash. "Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215723.
Full textVi undersöker Long short-term memory (LSTM) för avvikelsedetektion i tidsseriedata. På grund av svårigheterna i att hitta data med etiketter så har ett oövervakat an-greppssätt använts. Vi tränar rekursiva neuronnät (RNN) med LSTM-noder för att lära modellen det normala tidsseriemönstret och prediktera framtida värden. Vi undersö-ker olika sätt av att behålla LSTM-tillståndet och effekter av att använda ett konstant antal tidssteg på LSTM-prediktionen och avvikelsedetektionsprestandan. LSTM är också jämförda med vanliga neuronnät med fasta tidsfönster över indata. Våra experiment med tre verkliga datasetvisar att även om LSTM RNN är tillämpbara för generell tidsseriemodellering och avvikelsedetektion så är det avgörande att behålla LSTM-tillståndet för att få de önskaderesultaten. Dessutom är det inte nödvändigt att använda LSTM för enkla tidsserier.
Holm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Full textHudgins, Hayden. "Human Path Prediction using Auto Encoder LSTMs and Single Temporal Encoders." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2119.
Full textLindström, Per. "Deep Imitation Learning on Spatio-Temporal Data with Multiple Adversarial Agents Applied on Soccer." Thesis, Linköpings universitet, Databas och informationsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158076.
Full textCissoko, Mamadou Ben Hamidou. "Adaptive time-aware LSTM for predicting and interpreting ICU patient trajectories from irregular data." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD012.
Full textIn personalized predictive medicine, accurately modeling a patient's illness and care processes is crucial due to the inherent long-term temporal dependencies. However, Electronic Health Records (EHRs) often consist of episodic and irregularly timed data, stemming from sporadic hospital admissions, which create unique patterns for each hospital stay. Consequently, constructing a personalized predictive model necessitates careful consideration of these factors to accurately capture the patient's health journey and assist in clinical decision-making. LSTM networks are effective for handling sequential data like EHRs, but they face two significant limitations: the inability to interpret prediction results and to take into account irregular time intervals between consecutive events. To address limitations, we introduce novel deep dynamic memory neural networks called Multi-Way Adaptive and Adaptive Multi-Way Interpretable Time-Aware LSTM (MWTA-LSTM and AMITA) designed for irregularly collected sequential data. The primary objective of both models is to leverage medical records to memorize illness trajectories and care processes, estimate current illness states, and predict future risks, thereby providing a high level of precision and predictive power
Mukhedkar, Dhananjay. "Polyphonic Music Instrument Detection on Weakly Labelled Data using Sequence Learning Models." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279060.
Full textPolyfonisk eller multipel musikinstrumentdetektering är ett svårt problem jämfört med att detektera enstaka eller soloinstrument i en ljudinspelning. Eftersom musik är tidsseriedata kan den modelleras med hjälp av sekvensinlärningsmetoder inom djup inlärning. Nyligen har ’Temporal Convolutional Network’ (TCN) visat sig överträffa konventionella ’Recurrent Neural Network’ (RNN) på flertalet sekvensmodelleringsuppgifter. Även om det har skett betydande förbättringar i metoder för djup inlärning, blir dataknapphet ett problem vid utbildning av storskaliga modeller. Svagt märkta data är ett alternativ där ett klipp kommenteras för närvaro av frånvaro av instrument utan att ange de tidpunkter då ett instrument låter. Denna studie undersöker hur TCN-modellen jämförs med en ’Long Short-Term Memory’ (LSTM) -modell medan den tränas i svagt märkta datasätt. Resultaten visade framgångsrik utbildning av båda modellerna tillsammans med generalisering i en separat datasats. Jämförelsen visade att TCN presterade bättre än LSTM, men endast marginellt. Därför kan man från de genomförda experimenten inte uttryckligen dra slutsatsen om TCN övertygande är ett bättre val jämfört med LSTM i samband med instrumentdetektering, men definitivt ett starkt alternativ.
Jain, Monika. "Regularized ensemble correlation filter tracking." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/229266/1/Monika_Jain_Thesis.pdf.
Full textRaminella, Marco. "Predizione real-time da dati di sensori impiantistici e ambientali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18643/.
Full textMax, Lindblad. "The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223966.
Full textDenna avhandling jämför två olika tillvägagångssätt vad gäller parsningen av händelsebaserad signaldata från fordon för att producera indata till en förutsägelsemodell i form av ett neuronnät, nämligen händelseparsning, där datan förblir ojämnt fördelad över tidsdomänen, och skivparsning, där datan är omgjord till att istället vara jämnt fördelad över tidsdomänen. Det dataset som används för dessa experiment är ett antal signalloggar från fordon som kommer från Scania. Jämförelser mellan parsningsmetoderna gjordes genom att först träna ett lång korttidsminne (LSTM) återkommande neuronnät (RNN) på vardera av de skapade dataseten för att sedan mäta utmatningsfelet och resurskostnader för varje modell efter att de validerats på en delad uppsättning av valideringsdata. Resultaten från dessa tester visar tydligt på att skivparsning står sig väl mot händelseparsning.
Book chapters on the topic "LSTM Temporel"
Zheng, Lin, Chaowei Qi, and Shibo Zhao. "Multivariate Passenger Flow Forecast Based on ACLB Model." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 104–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_12.
Full textBakalos, Nikolaos, Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Kassiani Papasotiriou, and Matthaios Bimpas. "Fusing RGB and Thermal Imagery with Channel State Information for Abnormal Activity Detection Using Multimodal Bidirectional LSTM." In Cyber-Physical Security for Critical Infrastructures Protection, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69781-5_6.
Full textWang, Huimu, Zhen Liu, Zhiqiang Pu, and Jianqiang Yi. "STGA-LSTM: A Spatial-Temporal Graph Attentional LSTM Scheme for Multi-agent Cooperation." In Neural Information Processing, 663–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_56.
Full textLi, Hongsheng, Guangming Zhu, Liang Zhang, Juan Song, and Peiyi Shen. "Graph-Temporal LSTM Networks for Skeleton-Based Action Recognition." In Pattern Recognition and Computer Vision, 480–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60639-8_40.
Full textSingh, Vikram, and Sohan Kumar. "Temporal Intelligence: Recognizing User Activities with Stacked LSTM Networks." In Smart Innovation, Systems and Technologies, 309–19. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-6222-4_25.
Full textSilva, Rafael, Lourenço Abrunhosa Rodrigues, André Lourenço, and Hugo Plácido da Silva. "Temporal Dynamics of Drowsiness Detection Using LSTM-Based Models." In Advances in Computational Intelligence, 211–20. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43085-5_17.
Full textCissoko, Mamadou Ben Hamidou, Vincent Castelain, and Nicolas Lachiche. "Modeling Temporal Dynamics in Irregular ICU Data Using MWTA-LSTM." In Lecture Notes in Computer Science, 26–37. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73500-4_3.
Full textLiu, Jun, Amir Shahroudy, Dong Xu, and Gang Wang. "Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition." In Computer Vision – ECCV 2016, 816–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46487-9_50.
Full textYao, Li, and Ying Qian. "DT-3DResNet-LSTM: An Architecture for Temporal Activity Recognition in Videos." In Advances in Multimedia Information Processing – PCM 2018, 622–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00776-8_57.
Full textHuang, Rui, Wanyue Zhang, Abhijit Kundu, Caroline Pantofaru, David A. Ross, Thomas Funkhouser, and Alireza Fathi. "An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds." In Computer Vision – ECCV 2020, 266–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58523-5_16.
Full textConference papers on the topic "LSTM Temporel"
Wang, Peicheng. "Multi-Feature Temporal Prediction Based on Hybrid LSTM Models." In 2024 IEEE 7th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 207–10. IEEE, 2024. https://doi.org/10.1109/auteee62881.2024.10869794.
Full textLi, Ming, Furui Zhang, Yuqing Wang, Jing Ren, and Qiang Zhou. "Multidimensional Temporal Photovoltaic Power Prediction Based on VMD-SSA-LSTM." In 2024 6th International Conference on Energy Systems and Electrical Power (ICESEP), 192–97. IEEE, 2024. http://dx.doi.org/10.1109/icesep62218.2024.10651709.
Full textMedeiros, Thiago, and Alfredo Weitzenfeld. "A Place Cell Model for Spatio-Temporal Navigation Learning with LSTM." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650241.
Full textAlbino, Adrian Joseph, Julian Ernest Curativo, and Christine F. Peña. "Spatio-Temporal Crime Prediction Using Dynamic Mode Decomposition and CNN-LSTM." In 2024 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), 384–90. IEEE, 2024. https://doi.org/10.1109/comnetsat63286.2024.10862638.
Full textRoy, Pritha Singha, and Vinay Kukreja. "Temporal Evolution of Color Variations in Land Lotus Using CNN-LSTM Method." In 2024 Global Conference on Communications and Information Technologies (GCCIT), 1–6. IEEE, 2024. https://doi.org/10.1109/gccit63234.2024.10862966.
Full textAzizah, Nur, Eko Mulyanto Yuniarno, and Mauridhi Hery Purnomo. "Lip Reading Using Spatio Temporal Convolutions (STCNN) And Long Short Term Memory (LSTM)." In 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), 734–39. IEEE, 2024. http://dx.doi.org/10.1109/isitia63062.2024.10667885.
Full textSong, Jingkuan, Lianli Gao, Zhao Guo, Wu Liu, Dongxiang Zhang, and Heng Tao Shen. "Hierarchical LSTM with Adjusted Temporal Attention for Video Captioning." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/381.
Full textAlmeida, Anderson, Marcos Amaris, and Bruno Merlin. "Predição temporal e espaço-temporal dos parâmetros da qualidade da água." In Escola Regional de Alto Desempenho Norte 2. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/erad-no2.2021.18676.
Full textKong, Dejiang, and Fei Wu. "HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/324.
Full textJiang, P., I. Bychkov, J. Liu, and A. Hmelnov. "Predicting of air pollutant concentrations based on spatio-temporal attention convolutional LSTM networks." In 1st International Workshop on Advanced Information and Computation Technologies and Systems 2020. Crossref, 2021. http://dx.doi.org/10.47350/aicts.2020.09.
Full text