Dissertations / Theses on the topic 'LSTM Neural networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'LSTM Neural networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Paschou, Michail. "ASIC implementation of LSTM neural network algorithm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254290.
Full textLSTM neurala nätverk har använts för taligenkänning, bildigenkänning och andra artificiella intelligensapplikationer i många år. De flesta applikationer utför LSTM-algoritmen och de nödvändiga beräkningarna i digitala moln. Offline lösningar inkluderar användningen av FPGA och GPU men de mest lovande lösningarna inkluderar ASIC-acceleratorer utformade för endast dettaändamål. Denna rapport presenterar en ASIC-design som kan utföra multipla iterationer av LSTM-algoritmen på en enkelriktad neural nätverksarkitetur utan peepholes. Den föreslagna designed ger aritmetrisk nivå-parallellismalternativ som block som är instansierat baserat på parametrar. Designens inre konstruktion implementerar pipelinerade, parallella, eller seriella lösningar beroende på vilket anternativ som är optimalt till alla fall. Konsekvenserna för dessa beslut diskuteras i detalj i rapporten. Designprocessen beskrivs i detalj och utvärderingen av designen presenteras också för att mäta noggrannheten och felmarginal i designutgången. Resultatet av arbetet från denna rapport är en fullständig syntetiserbar ASIC design som har implementerat ett LSTM-lager, ett fullständigt anslutet lager och ett Softmax-lager som kan utföra klassificering av data baserat på tränade viktmatriser och biasvektorer. Designen använder huvudsakligen 16bitars fast flytpunktsformat med 5 heltal och 11 fraktions bitar men ökade precisionsrepresentationer används i vissa block för att minska felmarginal. Till detta har även en verifieringsmiljö utformats som kan utföra simuleringar, utvärdera designresultatet genom att jämföra det med resultatet som produceras från att utföra samma operationer med 64-bitars flytpunktsprecision på en SystemVerilog testbänk och mäta uppstådda felmarginal. Resultaten avseende noggrannheten och designutgångens felmarginal presenteras i denna rapport.Designen gick genom Logisk och Fysisk syntes och framgångsrikt resulterade i en funktionell nätlista för varje testad konfiguration. Timing, area och effektmätningar på den genererade nätlistorna av olika konfigurationer av designen visar konsistens och rapporteras i denna rapport.
Cavallie, Mester Jon William. "Using LSTM Neural Networks To Predict Daily Stock Returns." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-106124.
Full textPokhrel, Abhishek <1996>. "Stock Returns Prediction using Recurrent Neural Networks with LSTM." Master's Degree Thesis, Università Ca' Foscari Venezia, 2022. http://hdl.handle.net/10579/22038.
Full textÄrlemalm, Filip. "Harbour Porpoise Click Train Classification with LSTM Recurrent Neural Networks." Thesis, KTH, Teknisk informationsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215088.
Full textVanlig tumlare är en tandval vars närvaro i Skandinavien är hotad. Ett steg mot att kunnabevara arten i utsatta områden är att studera och observera tumlarbeståndets tillväxt ellertillbakagång i dessa områden. Detta görs idag med hjälp av ljudinspelare för undervattensbruk,så kallade hydrofoner, samt manuella analysverktyg. Den här rapporten beskriver enmetod som moderniserar processen för detektering av vanlig tumlare genom maskininlärning.Detekteringen är baserad på insamlad data från hydrofonen AQUAclick 100. Bearbetning ochklassificering av data har automatiserats genom att använda ett staplat återkopplande neuraltnätverk med långt korttidsminne utarbetat specifikt för detta ändamål.
Li, Edwin. "LSTM Neural Network Models for Market Movement Prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231627.
Full textAtt förstå och kunna förutsäga hur index varierar med tiden och andra parametrar är ett viktigt problem inom kapitalmarknader. Tidsserieanalys med autoregressiva metoder har funnits sedan årtionden tillbaka, och har oftast gett goda resultat. Dessa metoder saknar dock möjligheten att förklara trender och cykliska variationer i tidsserien, något som kan karaktäriseras av tidsvarierande samband, men även samband mellan parametrar som indexet beror utav. Syftet med denna studie är att undersöka om recurrent neural networks (RNN) med long short-term memory-celler (LSTM) kan användas för att fånga dessa samband, för att slutligen användas som en modell för att komplettera indexhandel. Experimenten är gjorda mot en modifierad S&P-500 datamängd, och två distinkta modeller har tagits fram. Den ena är en multivariat regressionsmodell för att förutspå exakta värden, och den andra modellen är en multivariat klassifierare som förutspår riktningen på nästa dags indexrörelse. Experimenten visar för den konfiguration som presenteras i rapporten att LSTM RNN inte passar för att förutspå exakta värden för indexet, men ger tillfredsställande resultat när modellen ska förutsäga indexets framtida riktning.
Zambezi, Samantha. "Predicting social unrest events in South Africa using LSTM neural networks." Master's thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33986.
Full textHolm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Full textGraffi, Giacomo. "A novel approach for Credit Scoring using Deep Neural Networks with bank transaction data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textXiang, Wenliang. "Anomaly detection by prediction for health monitoring of satellites using LSTM neural networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24695/.
Full textLin, Alvin. "Video Based Automatic Speech Recognition Using Neural Networks." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2343.
Full textAlam, Samiul. "Recurrent neural networks in electricity load forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233254.
Full textI denna uppsats beskrivs två studier som jämför feed-forward neurala nätverk (FFNN) och long short-term memory neurala nätverk (LSTM) i prognostisering av elkonsumtion. I den första studien undersöks univariata modeller som använder tidigare elkonsumtion, och flervariata modeller som använder tidigare elkonsumtion och temperaturmätningar, för att göra prognoser av elkonsumtion för nästa dag. Hur långt bak i tiden tidigare information hämtas ifrån samt upplösningen av tidigare information varieras. I den andra studien undersöks FFNN- och LSTM-modeller med praktiska begränsningar såsom tillgänglighet av data i åtanke. Även storleken av nätverken varieras. I studierna finnes ingen skillnad mellan FFNN- och LSTM-modellernas förmåga att prognostisera elkonsumtion. Däremot minskar FFNN-modellens förmåga att prognostisera elkonsumtion då storleken av modellen ökar. Å andra sidan ökar LSTM-modellens förmåga då storkelen ökar. Utifrån dessa resultat anser vi inte att det finns tillräckligt med bevis till förmån för LSTM-modeller i prognostisering av elkonsumtion.
BHATT, HARSHIT. "SPEAKER IDENTIFICATION FROM VOICE SIGNALS USING HYBRID NEURAL NETWORK." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18865.
Full textRoxbo, Daniel. "A Detailed Analysis of Semantic Dependency Parsing with Deep Neural Networks." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156831.
Full textMartins, Helder. "Predicting user churn on streaming services using recurrent neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217109.
Full textLeverantörer av onlinetjänster har bevittnat en snabb användartillväxt under de senaste åren. Denna trend har lockat ett ökande antal konkurrenter som vill ta del av denna växande marknad. Detta har resulterat i att kostnaden för att locka nya kunder ökat avsevärt, vilket även ökat vikten av att behålla befintliga kunder. Det har därför gradvis blivit viktigare för företag att förbättra användarupplevelsen och se till att de behåller en större andel avanvändarna aktiva. Företag har därför ett starkt intresse avatt bygga verktyg som kan identifiera vad som driver kunder att stanna eller vad som får dem lämna. Detta arbete fokuserar därför på hur man kan prediktera att en användare är på väg att överge en tjänst, så kallad “churn”, samt identifiera vad som driver detta baserat på data från en onlinetjänst. Klassiska modeller som logistisk regression och random forests har tidigare använts på aggregerad användarinformation över en given tidsperiod för att med relativt god precision prediktera sannolikheten för att en användare kommer överge produkten. Under de senaste åren har dock sekventiella neurala nätverk (särskilt LSTM-varianten Long Short Term Memory), där data istället behandlas som sekvenser, visat imponerande resultat för andra domäner såsom taligenkänning och videoklassificering. Detta arbete undersöker hur väl LSTM-modeller kan användas för att prediktera churn jämfört med traditionella icke-sekventiella metoder när de tillämpas på data över användarbeteende från en musikstreamingtjänst. Arbetet undersöker även hur olika aspekter av data påverkar prestandan av modellerna inklusive distributionen mellan gruppen av användare som överger produkten mot de som stannar, längden av användarhändelseshistorik och olika val av användarfunktioner för modeller och användardatan. De erhållna resultaten visar att LSTM har en jämförbar prestanda med random forest för prediktering av användarchurn samt är signifikant bättre än logistisk regression. LSTMs visar sig således vara ett lämpligt val för att förutsäga churn på användarnivå. Utöver dessa resultat utvecklades även ett ramverk för att skapa dataset som är lämpliga för träning av prediktiva modeller, vilket kan utforskas ytterligare för att analysera användarbeteende och för att skapa förbättrade åtgärder för att behålla användare och minimera antalet kunder som överger tjänsten.
Näslund, Per. "Artificial Neural Networks in Swedish Speech Synthesis." Thesis, KTH, Tal-kommunikation, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239350.
Full textTalsynteser, också kallat TTS (text-to-speech) används i stor utsträckning inom smarta assistenter och många andra applikationer. Samtida forskning applicerar maskininlärning och artificiella neurala nätverk (ANN) för att utföra talsyntes. Det har visats i studier att dessa system presterar bättre än de äldre konkatenativa och parametriska metoderna. I den här rapporten utforskas ANN-baserade TTS-metoder och en av metoderna implementeras för det svenska språket. Den använda metoden kallas “Tacotron” och är ett första steg mot end-to-end TTS baserat på neurala nätverk. Metoden binder samman flertalet olika ANN-tekniker. Det resulterande systemet jämförs med en parametriskt TTS genom ett graderat preferens-test som innefattar 20 svensktalande försökspersoner. En statistiskt säkerställd preferens för det ANN- baserade TTS-systemet fastställs. Försökspersonerna indikerar att det ANN-baserade TTS-systemet presterar bättre än det parametriska när det kommer till ljudkvalitet och naturlighet men visar brister inom tydlighet.
Lagerhjelm, Linus. "Extracting Information from Encrypted Data using Deep Neural Networks." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155904.
Full textLousseief, Elias. "MahlerNet : Unbounded Orchestral Music with Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264993.
Full textMatematik och statistik i allmänhet, och maskininlärning och neurala nätverk i synnerhet, har sedan långt tillbaka använts för att modellera musik med en utveckling som kulminerat under de senaste decennierna. Exakt vid vilken historisk tidpunkt som musikalisk komposition för första gången tillämpades med strikt systematiska regler är svårt att säga; vissa skulle hävda att det skedde under Mozarts dagar, andra att det skedde redan långt tidigare. Oavsett vilket, innebär det att systematisk komposition är en företeelse med lång historia. Även om kompositörer i alla tider följt strukturer och regler, medvetet eller ej, som en del av kompositionsprocessen började man under 1900-talets mitt att göra detta i högre utsträckning och det var också då som de första programmen för musikalisk komposition, baserade på matematik, kom till. Den här uppsatsen i datateknik behandlar hur musik historiskt har komponerats med hjälp av datorer, ett område som också är känt som algoritmisk komposition. Uppsatsens fokus ligger på användning av maskininlärning och neurala nätverk och består av två delar: en litteraturstudie som i hög detalj behandlar utvecklingen under de senaste decennierna från vilken tas inspiration och erfarenheter för att konstruera MahlerNet, ett neuralt nätverk baserat på de tidigare modellerna MusicVAE, BALSTM, PerformanceRNN och BachProp. MahlerNet kan modellera polyfon musik med upp till 23 instrument och är en ny arkitektur som kommer tillsammans med en egen preprocessor som använder heuristiker från musikteori för att normalisera och filtrera data i MIDI-format till en intern representation. MahlerNet, och dess preprocessor, är helt och hållet implementerade för detta arbete och kan komponera musik som tydligt uppvisar egenskaper från den musik som nätverket tränats på. En viss kontinuitet finns i den skapade musiken även om det inte är i form av konkreta teman och motiv.
Fors, Johansson Christoffer. "Arrival Time Predictions for Buses using Recurrent Neural Networks." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165133.
Full textBonato, Tommaso. "Time Series Predictions With Recurrent Neural Networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textNääs, Starberg Filip, and Axel Rooth. "Predicting a business application's cloud server CPU utilization using the machine learning model LSTM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301247.
Full textAnvändandet av molntjänster ökar bland företag som önskar förbättrad flexibilitet och sänkta kostnader. De stora molntjänstleverantörerna använder en prismodell där kostnaden är direkt kopplad till användningen, och låter kunderna snabbt ställa om sin kapacitet, men det finns ändå förbättringsmöjligheter. CPU-behoven fluktuerar ofta vilket leder till meningslösa kostnader och onödig påverkan på klimatet när kapacitet är outnyttjad. För att lindra detta problem används i denna rapport en LSTM maskininlärningsmodell för att förutspå framtida CPU-utnyttjande. Genom att förutspå utnyttjandet upp till 30 minuter in i framtiden hinner företag ställa om sin kapacitet och undvika onödig kostnad och klimatpåverkan. Arbetet ¨ar uppdelat i två delar. Först en del där LSTM-modellen förutspår ett tidssteg åt gången. Därefter en del som analyserar träffsäkerheten för LSTM flera tidssteg in i framtiden, upp till 30 tidssteg. För att möjliggöra en objektiv utvärdering så jämfördes LSTM-modellen med ett standard recurrent neural network (RNN) vilken liknar LSTM i sin struktur. Resultaten i denna studie visar att LSTM verkar vara ¨överlägsen RNN, både när det gäller att förutspå ett tidssteg in i framtiden och när det gäller flera tidssteg in i framtiden. LSTM-modellen var kapabel att förutspå CPU-utnyttjandet 30 minuter in i framtiden med i hög grad bibehållen träffsäkerhet, vilket också var målet med studien. Sammanfattningsvis tyder resultaten på att denna LSTM-modell, och möjligen liknande LSTM-modeller, har potential att användas i samband med företagsapplikationer då man önskar att reducera onödig kostnad och klimatpåverkan.
Andréasson, David, and Blomquist Jesper Mortensen. "Forecasting the OMXS30 - a comparison between ARIMA and LSTM." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413793.
Full textDíaz, González Fernando. "Federated Learning for Time Series Forecasting Using LSTM Networks: Exploiting Similarities Through Clustering." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254665.
Full textFederated Learning utgör en statistisk utmaning vid träning med starkt heterogen sekvensdata. Till exempel så uppvisar tidsseriedata inom telekomdomänen blandade variationer och mönster över längre tidsintervall. Dessa distinkta fördelningar utgör en utmaning när en nod inte bara ska bidra till skapandet av en global modell utan även ämnar applicera denna modell på sin lokala datamängd. Att i detta scenario införa en global modell som ska passa alla kan visa sig vara otillräckligt, även om vi använder oss av de mest framgångsrika modellerna inom maskininlärning för tidsserieprognoser, Long Short-Term Memory (LSTM) nätverk, vilka visat sig kunna fånga komplexa mönster och generalisera väl till nya mönster. I detta arbete visar vi att genom att klustra klienterna med hjälp av dessa mönster och selektivt aggregera deras uppdateringar i olika globala modeller kan vi uppnå förbättringar av den lokal prestandan med minimala kostnader, vilket vi demonstrerar genom experiment med riktigt tidsseriedata och en grundläggande LSTM-modell.
Bergström, Carl, and Oscar Hjelm. "Impact of Time Steps on Stock Market Prediction with LSTM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262221.
Full textMaskininlärningsmodeller som redskap för att förutspå tidsserier har de senaste åren visat sig prestera exceptionellt bra. Vad gäller finansiella tidsserier i formen av aktieindex, som har en inneboende komplexitet, och är föremål för störningar och volatilitet, har förutsägelse av aktiemarknadsrörelser visat sig vara särskilt svårt igenom omfattande forskning. Målet med denna studie är att grundligt undersöka LSTM-arkitekturen för neurala nätverk och dess prestanda när den appliceras på aktieindexet S&P 500. Huvudfrågan kretsar kring att kvantifiera inverkan som varierande av antal tidssteg i LTSM-modellen har på prediktivprestanda när den appliceras på aktieindexet S&P 500. Data som använts i modellen är av hög pålitlighet, nedladdad frånBloomberg-terminalen, där stängningskurs har använts som feature i modellen. Andra beståndsdelar av modellen har baserats i tidigare forskning, där tillfredsställande resultat har uppnåtts. Resultaten indikerar att bland de testade tidsstegen så producerartio tidssteg bäst resultat. Dock verkar inte påverkan av antalet tidssteg vara särskilt signifikant för modellens övergripandeprestanda. Slutligen så presenterar sig implikationerna av resultaten för forskningsområdet som god grund för framtida forskning, där parametrar kan varieras och finjusteras i strävan efter optimal prestanda.
Jansson, Anton. "Predicting trajectories of golf balls using recurrent neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210552.
Full textDetta examensarbete har studerat problemet att förutspå den fullständiga bollbanan för en golfboll när den flyger i luften där endast den tredimensionella positionen av bollen observerades. Den typ av metod som användes för att lösa problemet använde sig av recurrent neural networks, i form av long short-term memory nätverk (LSTM). Motivationen bakom detta var att denna typ av nätverk hade lett till goda resultatet för liknande problem. Resultatet visar att använda sig av LSTM nätverk leder i genomsnitt till en 36.6 % förminskning av felet i den förutspådda nedslagsplatsen för bollen jämfört mot tidigare metoder som använder sig av numeriska simuleringar av en fysikalisk modell, om modellen användes på samma golfbana som den tränades på. Att använda en modell som var tränad på en annan golfbana leder till förbättringar i allmänhet, men inte om modellen användes på en golfbana där bollen fångades in med en annan frekvens. Detta problem löstes till en viss mån genom att träna om modellen med lite data från den nya golfbanan.
Nordberg, Andreas. "Evaluation of Neural Networks for Predictive Maintenance : A Volvo Penta Study." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176390.
Full textKvedaraite, Indre. "Sentiment Analysis of YouTube Public Videos based on their Comments." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105754.
Full textKorte, Christopher M. "A Preliminary Investigation into using Artificial Neural Networks to Generate Surgical Trajectories to Enable Semi-Autonomous Surgery in Space." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595499765813353.
Full textShojaee, Ali B. S. "Bacteria Growth Modeling using Long-Short-Term-Memory Networks." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1617105038908441.
Full textLindskog, Jakob, and Robin Gunnarsson. "Databearbetning på Ringhals." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-39773.
Full textThe new generation of digitalization has been ingrained into society. Algorithms and data models are controlling the news feed of social media, controlling the phone by interpreting voices and controlling the car, altogether with automonous vehicles. In the industries there is also an ongoing process where machine learning is applied to increase availability and reduce costs. The current paradigm for maintaining non-critical machines in the nuclear power industry is a combination of corrective maintenance and preventive maintenance. Corrective maintenance means doing repairs on the machine upon faults, preventive maintenance means doing repairs periodically. Both ways are costly because they run the risk of under- and over-maintaining the machine and therefore becoming resource-intensive. A paradigm shift is on it's way, and it's spelled Predictive Maintenance - being able to predict faults before they happen and plan maintenance thence. This report explores the possibilities of using LSTM and GRU to forecast potential damage on machines. This is based on data from measurements and historical issues on the machine.
Bermell, Måns. "Identification of Problem Gambling via Recurrent Neural Networks : Predicting self-exclusion due to problem gambling within the remote gambling sector by means of recurrent neural networks." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-159125.
Full textNawaz, Sabeen. "Analysis of Transactional Data with Long Short-Term Memory Recurrent Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281282.
Full textObehöriga transaktioner och bedrägerier i betalningar kan leda till stora ekonomiska förluster för banker och myndigheter. Inom maskininlärning har detta problem tidigare hanterats med hjälp av klassifierare via supervised learning. I detta examensarbete föreslår vi en modell som kan användas i ett system för att upptäcka bedrägerier. Modellen appliceras på omärkt data med många olika variabler. Modellen som används är en Long Short-term memory i en auto-encoder decoder nätverk. Datan transformeras med PCA och klustras med K-means. Modellen tränas till att rekonstruera en sekvens av betalningar med hög noggrannhet. Vår resultat visar att LSTM-AED presterar bättre än en modell som endast gissar nästa punkt i sekvensen. Resultatet visar också att mycket information i datan går förlorad när den förbehandlas och transformeras.
Backer-Meurke, Henrik, and Marcus Polland. "Predicting Road Rut with a Multi-time-series LSTM Model." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37599.
Full textRacette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Full textMussumeci, Elisa. "A machine learning approach to dengue forecasting: comparing LSTM, Random Forest and Lasso." reponame:Repositório Institucional do FGV, 2018. http://hdl.handle.net/10438/24093.
Full textApproved for entry into archive by ÁUREA CORRÊA DA FONSECA CORRÊA DA FONSECA (aurea.fonseca@fgv.br) on 2018-05-29T19:15:35Z (GMT) No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5)
Made available in DSpace on 2018-06-14T19:45:29Z (GMT). No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5) Previous issue date: 2018-04-12
We used the Infodengue database of incidence and weather time-series, to train predictive models for the weekly number of cases of dengue in 790 cities of Brazil. To overcome a limitation in the length of time-series available to train the model, we proposed using the time series of epidemiologically similar cities as predictors for the incidence of each city. As Machine Learning-based forecasting models have been used in recent years with reasonable success, in this work we compare three machine learning models: Random Forest, lasso and Long-short term memory neural network in their forecasting performance for all cities monitored by the Infodengue Project.
Peng, Yingqi. "Japanese Black Cattle Behavior Pattern Classification Based on Neural Networks Using Inertial Sensors and Magnetic Direction Sensor." Kyoto University, 2019. http://hdl.handle.net/2433/244558.
Full textPersson, Peter. "Starved neural learning : Morpheme segmentation using low amounts of data." Thesis, Stockholms universitet, Avdelningen för datorlingvistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-160953.
Full textGelly, Grégory. "Réseaux de neurones récurrents pour le traitement automatique de la parole." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS295/document.
Full textAutomatic speech processing is an active field of research since the 1950s. Within this field the main area of research is automatic speech recognition but simpler tasks such as speech activity detection, language identification or speaker identification are also of great interest to the community. The most recent breakthrough in speech processing appeared around 2010 when speech recognition systems using deep neural networks drastically improved the state-of-the-art. Inspired by this gains and the work of Alex Graves on recurrent neural networks (RNN), we decided to explore the possibilities brought by these models on realistic data for two different tasks: speech activity detection and spoken language identification. In this work, we closely look at a specific model for the RNNs: the Long Short Term Memory (LSTM) which mitigates a lot of the difficulties that can arise when training an RNN. We augment this model and introduce optimization methods that lead to significant performance gains for speech activity detection and language identification. More specifically, we introduce a WER-like loss function to train a speech activity detection system so as to minimize the word error rate of a downstream speech recognition system. We also introduce two different methods to successfully train a multiclass classifier based on neural networks for tasks such as LID. The first one is based on a divide-and-conquer approach and the second one is based on an angular proximity loss function. Both yield performance gains but also speed up the training process
Parthiban, Dwarak Govind. "On the Softmax Bottleneck of Word-Level Recurrent Language Models." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41412.
Full textBroomé, Sofia. "Objectively recognizing human activity in body-worn sensor data with (more or less) deep neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210243.
Full textInom ramen för uppsatsen testas hur väl rörelsemönster kan urskiljas ur accelerometerdatamed hjälp av den gren av maskininlärning som kallas djupinlärning; där djupa artificiellaneurala nätverk av noder funktionsapproximerar mappandes från domänen av sensordatatill olika fördefinerade kategorier av aktiviteter så som gång, stående, sittande eller liggande.Det finns ett intresse från den medicinska sidan att kunna mäta fysisk aktivitet objektivt,bland annat eftersom det visats att det finns en korrelation mellan ökade hälsorisker hosbarn och deras mängd daglig skärmtid. Denna typ av mätningar ska helst kunna göras medicke-invasiv utrustning till låg kostnad för att kunna göra större studier.Enklare nätverksarkitekturer samt återimplementeringar av bästa möjliga teknik inomområdet Mänsklig aktivitetsigenkänning (HAR) testas både på ett benchmarkingdataset ochpå egeninhämtad data i samarbete med Institutet för Folkhälsovetenskap på Karolinska Institutetoch resultat redovisas för olika val av möjliga klassificeringar och olika antal dimensionerper mätpunkt. De uppnådda resultaten (95% F1-score) på ett 4- och 5-klass-problem ärjämförbara med de bästa tidigare publicerade resultaten för aktivitetsigenkänning, vilket äranmärkningsvärt då då betydligt färre accelerometrar har använts här än i de åsyftade studierna.Förutom klassificeringsresultaten som redovisas bidrar det här arbetet med ett nyttinhämtat och kategorimärkt dataset; KTH-KI-AA. Det är jämförbart i antal datapunkter medspridda benchmarkingdataset inom HAR-området.
Stark, Love. "Outlier detection with ensembled LSTM auto-encoders on PCA transformed financial data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296161.
Full textFinansinstitut genererar idag en stor mängd data, data som kan innehålla intressant information värd att undersöka för att främja den ekonomiska tillväxten för nämnda institution. Det finns ett intresse för att analysera dessa informationspunkter, särskilt om de är avvikande från det normala dagliga arbetet. Att upptäcka dessa avvikelser är dock inte en lätt uppgift och ej möjligt att göra manuellt på grund av de stora mängderna data som genereras dagligen. Tidigare arbete för att lösa detta har undersökt användningen av maskininlärning för att upptäcka avvikelser i finansiell data. Tidigare studier har visat på att förbehandlingen av datan vanligtvis står för en stor del i förlust av emphinformation från datan. Detta arbete syftar till att studera om det finns en korrekt balans i hur förbehandlingen utförs för att behålla den högsta mängden information samtidigt som datan inte förblir för komplex för maskininlärnings-modellerna. Det emphdataset som användes bestod av valutatransaktioner som tillhandahölls av värdföretaget och förbehandlades genom användning av Principal Component Analysis (PCA). Huvudsyftet med detta arbete är att undersöka om en ensemble av Long Short-Term Memory Recurrent Neural Networks (LSTM), konfigurerad som autoenkodare, kan användas för att upptäcka avvikelser i data och om ensemblen är mer precis i sina predikteringar än en ensam LSTM-autoenkodare. Tidigare studier har visat att en ensembel avautoenkodare kan visa sig vara mer precisa än en singel autokodare, särskilt när SkipCells har implementerats (en konfiguration som hoppar över vissa av LSTM-cellerna för att göra modellerna mer varierade). En datapunkt kommer att betraktas som en avvikelse om LSTM-modellen har problem med att återskapa den väl, dvs ett mönster som nätverket har svårt att återskapa, vilket gör datapunkten tillgänglig för vidare undersökningar. Resultaten visar att en ensemble av LSTM-modeller predikterade mer precist än en singel LSTM-modell när det gäller att återskapa datasetet, och då enligt vår definition av avvikelser, mer precis avvikelse detektering. Resultaten från förbehandlingen visar olika metoder för att uppnå ett optimalt antal komponenter för dina data genom att studera bibehållen varians och precision för PCA-transformation jämfört med modellprestanda. En av slutsatserna från arbetet är att en ensembel av LSTM-nätverk kan visa sig vara mycket kraftfulla, men att alternativ till förbehandling bör undersökas, såsom categorical embedding istället för PCA.
Zhu, Yuehan. "Automated Supply-Chain Quality Inspection Using Image Analysis and Machine Learning." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20069.
Full textLarsson, Klara, and Freja Ling. "Time Series forecasting of the SP Global Clean Energy Index using a Multivariate LSTM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301904.
Full textDen pågående klimatkrisen har tvingat allt fler länder till att vidta åtgärder, och FN:s globala hållbarhetsmål och Parisavtalet ökar intresset för förnyelsebar energi. Vidare lanserade EU-kommissionen den 21 april 2021 ett omfattande åtgärdspaket, med syftet att öka investeringar i hållbara verksamheter. Detta skapar i sin tur ett ökat intresse för investeringar i förnyelsebar energi och metoder för att förutspå aktiepriser för dessa bolag. Maskininlärningsmodeller har tidigare använts för tidsserieanalyser med goda resultat, men att förutspå aktieindex har visat sig svårt till stor del på grund av uppgiftens komplexitet och antalet variabler som påverkar börsen. Den här uppsatsen använder sig av maskininlärningsmodellen long short-term memory (LSTM) för att förutspå S&P:s Global Clean Energy Index. Syftet är att ta reda på hur träffsäkert en LSTM-modell kan förutspå detta index, och hur resultatet påverkas då modellen används med ytterligare variabler som korrelerar med indexet. De variabler som undersöks är priset på råolja, priset på guld, och ränta. Modeller för var variabel skapades, samt en modell med samtliga variabler och en med endast historisk data från indexet. Resultatet visar att den modell med den variabel som korrelerar starkast med indexet presterade bäst bland flervariabelmodellerna, men den modell som endast användes med historisk data från indexet gav det mest träffsäkra resultatet.
Смішний, Денис Миколайович. "Система прогнозування економічних показників." Master's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/30950.
Full textMaster's Thesis: 88 pp., 20 figs., 27 tables, 1 appendix, 33 sources. The urgency of the problem. Globalization and population growth are con-tributing to the development of the global economy and, consequently, to the emergence of new types of economic activity and new players in the labor market. When implementing your own business it is important to properly evaluate the risks of the market, analyzing and trying to predict the movement of quotations in the near future for minimal financial losses. Relationship with working with scientific programs, plans, topics. Cur-rently, it has no specific links to scientific programs or plans. The purpose and objectives of the study. The purpose of this work is re-search possibility of forecasting the economic parameters of enterprises on the ex-ample of stock prices of companies on the stock exchange. The purpose is to de-velop a system based on a neural network, capable of analyzing specified economic indicators and, based on the data obtained, to predict their dynamics. Object of study. The process of forecasting economic performance using neural network elements. Subject of study. Methods of analysis and processing of economic data for a certain period. Novelty. Obtaining a software product capable of predicting economic fluc-tuations. Investigation of the possibility of creating a universal model based on a neural network, which would not require specialization and would be able to work effectively with any set of input data without further training.
Hernandez, Villapol Jorge Luis. "Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062877/.
Full textKindbom, Hannes. "LSTM vs Random Forest for Binary Classification of Insurance Related Text." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252748.
Full textDet vetenskapliga området språkteknologi har fått ökad uppmärksamhet den senaste tiden, men mindre fokus riktas på att jämföra modeller som skiljer sig i komplexitet. Den här kandidatuppsatsen jämför Random Forest med LSTM, genom att undersöka hur väl modellerna kan användas för att klassificera ett meddelande som fråga eller icke-fråga. Jämförelsen gjordes genom att träna och optimera modellerna på historisk chattdata från det svenska försäkringsbolaget Hedvig. Olika typer av word embedding, så som Word2vec och Bag of Words, testades också. Resultaten visade att LSTM uppnådde något högre F1 och accuracy än Random Forest. Modellernas prestanda förbättrades inte signifikant efter optimering och resultatet var också beroende av vilket korpus modellerna tränades på. En undersökning av hur en chattbot skulle påverka Hedvigs adoption rate genomfördes också, huvudsakligen genom att granska tidigare studier om chattbotars effekt på användarupplevelsen. De potentiella effekterna på en innovations fem attribut, relativ fördel, kompatibilitet, komplexitet, prövbarhet and observerbarhet analyserades för att kunna svara på frågeställningen. Resultaten visade att Hedvigs adoption rate kan påverkas positivt, genom att förbättra de två första attributen. Effekterna en chattbot skulle ha på komplexitet, prövbarhet och observerbarhet ansågs dock vara försumbar, om inte negativ.
Volný, Miloš. "Využití umělé inteligence jako podpory pro rozhodování v podniku." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2019. http://www.nusl.cz/ntk/nusl-399447.
Full textCoen, Paul Dixon. "Human Activity Recognition and Prediction using RGBD Data." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2562.
Full textSvanberg, John. "Anomaly detection for non-recurring traffic congestions using Long short-term memory networks (LSTMs)." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234465.
Full textI den här masteruppsatsen implementerar vi en tvåstegsalgoritm för avvikelsedetektering för icke återkommande trafikstockningar. Data är insamlad från kollektivtrafikbussarna i Stockholm. Vi undersöker användningen av maskininlärning för att modellerna tidsseriedata med hjälp av LSTM-nätverk och evaluerar sedan dessa resultat med en grundmodell. Avvikelsedetekteringsalgoritmen inkluderar både kollektiv och kontextuell uttrycksfullhet, vilket innebär att kollektiva förseningar kan hittas och att även temporaliteten hos datan beaktas. Resultaten visar att prestandan hos avvikelsedetekteringen förbättras av mindre prediktionsfel genererade av LSTM-nätverket i jämförelse med grundmodellen. En regel för avvikelser baserad på snittet av två andra regler reducerar märkbart antalet falska positiva medan den höll kvar antalet sanna positiva på en tillräckligt hög nivå. Prestandan hos avvikelsedetekteringsalgoritmen har setts bero av vilken vägsträcka den tillämpas på, där några vägsträckor är svårare medan andra är lättare för avvikelsedetekteringen. Den bästa varianten av algoritmen hittade 84.3 % av alla avvikelser och 96.0 % av all avvikelsefri data blev markerad som normal data.
Hellstenius, Sasha. "Model comparison of patient volume prediction in digital health care." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229908.
Full textEn korrekt förutsägelse av patientvolym är essentiell för att förbättra resursallokering av läkare inom traditionell liksom digital vård. Olika metoder för förutsägelse av patientvolym har undersökts inom den traditionella vården medan liknande studier inom den digitala sektorn saknas. I denna uppsats undersöks två icke-linjära moderna metoder för tidsserieanalys av patientvolym inom den digitala sjukvården. Modellerna som undersöks är multi-lagersperceptronen (MLP) samt Long Short-Term Memory (LSTM) nätverket. Resultaten som presenteras indikerar att problemet i sig är okomplicerat samtidigt som det visar sig finnas signifikanta skillnader i korrektheten av förutsägelser mellan de olika modellerna. Slutsatserna som presenteras pekar på att LSTM-modellen erbjuder signifikanta fördelar som överväger komplexitets- och prestandakostnaden.
Chen, Kunru. "Recurrent Neural Networks for Fault Detection : An exploratory study on a dataset about air compressor failures of heavy duty trucks." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-38184.
Full text