Academic literature on the topic 'LST1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LST1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LST1"
Roberg, Kevin J., Michelle Crotwell, Peter Espenshade, Ruth Gimeno, and Chris A. Kaiser. "LST1 Is a SEC24 Homologue Used for Selective Export of the Plasma Membrane ATPase from the Endoplasmic Reticulum." Journal of Cell Biology 145, no. 4 (May 17, 1999): 659–72. http://dx.doi.org/10.1083/jcb.145.4.659.
Full textCui, Yixian, Smriti Parashar, Muhammad Zahoor, Patrick G. Needham, Muriel Mari, Ming Zhu, Shuliang Chen, et al. "A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation." Science 365, no. 6448 (July 4, 2019): 53–60. http://dx.doi.org/10.1126/science.aau9263.
Full textWan, Jikang, Min Zhu, and Wei Ding. "Accuracy Evaluation and Parameter Analysis of Land Surface Temperature Inversion Algorithm for Landsat-8 Data." Advances in Meteorology 2021 (September 24, 2021): 1–16. http://dx.doi.org/10.1155/2021/9917145.
Full textYau, Anthony C. Y., Jonatan Tuncel, Sabrina Haag, Ulrika Norin, Miranda Houtman, Leonid Padyukov, and Rikard Holmdahl. "Conserved 33-kb haplotype in the MHC class III region regulates chronic arthritis." Proceedings of the National Academy of Sciences 113, no. 26 (June 14, 2016): E3716—E3724. http://dx.doi.org/10.1073/pnas.1600567113.
Full textSchiller, Christian, Maximilian J. E. Nitschké, Alexander Seidl, Elisabeth Kremmer, and Elisabeth H. Weiss. "Rat Monoclonal Antibodies Specific for LST1 Proteins." Hybridoma 28, no. 4 (August 2009): 281–86. http://dx.doi.org/10.1089/hyb.2009.0021.
Full textRoberg, Kevin J., Stephen Bickel, Neil Rowley, and Chris A. Kaiser. "Control of Amino Acid Permease Sorting in the Late Secretory Pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST78." Genetics 147, no. 4 (December 1, 1997): 1569–84. http://dx.doi.org/10.1093/genetics/147.4.1569.
Full textRollinger-Holzinger, Ingrid, Brigitte Eibl, Marc Pauly, Ute Griesser, François Hentges, Bernhard Auer, Georg Pall, et al. "LST1: A Gene with Extensive Alternative Splicing and Immunomodulatory Function." Journal of Immunology 164, no. 6 (March 15, 2000): 3169–76. http://dx.doi.org/10.4049/jimmunol.164.6.3169.
Full textSchiller, Christian, Carina Nowak, Kalliope N. Diakopoulos, Ulrich H. Weidle, and Elisabeth H. Weiss. "An Upstream Open Reading Frame Regulates LST1 Expression during Monocyte Differentiation." PLoS ONE 9, no. 5 (May 9, 2014): e96245. http://dx.doi.org/10.1371/journal.pone.0096245.
Full textWeidle, Ulrich H., Ina Rohwedder, Fabian Birzele, Elisabeth H. Weiss, and Christian Schiller. "LST1: A multifunctional gene encoded in the MHC class III region." Immunobiology 223, no. 11 (November 2018): 699–708. http://dx.doi.org/10.1016/j.imbio.2018.07.018.
Full textD’Aloia, Alessia, Edoardo Arrigoni, Barbara Costa, Giovanna Berruti, Enzo Martegani, Elena Sacco, and Michela Ceriani. "RalGPS2 Interacts with Akt and PDK1 Promoting Tunneling Nanotubes Formation in Bladder Cancer and Kidney Cells Microenvironment." Cancers 13, no. 24 (December 16, 2021): 6330. http://dx.doi.org/10.3390/cancers13246330.
Full textDissertations / Theses on the topic "LST1"
Schiller, Christian. "Funktion und Expression der transmembranen Isoformen des HLA-Klasse-III-Gens LST1." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-126674.
Full textD'ALOIA, ALESSIA. "RalGPS2 interacts with LST1 and supports tunneling nanotubes formation in human bladder cancer cells." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158357.
Full textRalGPS2 is a murine guanine nucleotide exchange factor belonging to RalGPS family; that contains a well conserved CDC25-like domain in the N-terminal region, a PxxP motif in central region and a PH (Pleckstrin Homology) domain in the C-terminus. It has been demonstrated that RalGPS2 can activate RalA in vivo, while the PH-PxxP domain behaves as a dominant negative for RalA activation in NIH3T3 and PC12 cells. Furthermore, when overexpressed, RalGPS2 causes considerable morphological changes in HEK293 cells, suggesting its possible role on cytoskeleton re-organization. These data suggest us a possible role of RalGPS2 and its domains in cytoskeleton re-modelling also in tumour cell lines. For this purpose it has been chosen the human bladder cancer cell line 5637, as a model. In the present work it has been shown that RalGPS2 alone is able to activate RalA in “vivo”, while its depletion significantly lowers RalA levels. Furthermore, it has been demonstrated that PH-PxxP region and PH domain of RalGPS2 behave as dominant negatives for RalA activation. Moreover, confocal analysis reveals a partial, but marked co-localization between RalA, RalGPS2, the PH domain and the PH-PxxP region at the level of plasma membrane end in thin membrane protrusions. The presence of these protrusions in which localize the GTPase RalA suggested us that these structures could be Tunneling Nanotubes (TNTs). TNTs are intercellular conduits and have been shown to enable the transport of various cellular components and signals, they are important for cellular communication between cells. Since nanotubes were initially described to contain actin but not tubulin we used this criterion to characterize the protrusions that we have observed in 5637 cells. Confocal analysis reveals presence of protrusions rich in actin but poor in tubulin. To determinate whether RalGPS2 and its domain induce formation of TNTs, it has been made a confocal analysis in which it has been characterized protrusions formed by cells. Statistical analysis reveals that RalGPS2 supports TNTs formation in 5637 cells. Later, it has been analyzed the role of RalA effectors in TNTs formation. Statistical analysis shown that lack of interaction between RalA and Sec5 (subunit of exocyst complex and RalA effector) strongly reduces nanotubes formation. Therefore, both Sec5 and RalGPS2 seem to play a key role in generation of these structures. To confirm the role of RalGPS2 in TNTs formation and to evaluate whether it cooperates with Sec5 in this process, it has been performed an co-immunoprecipitation assay. This investigation reveals the presence of a complex between RalA,RalGPS2, LST1 (protein which induces TNTs formation) and Sec5. Moreover, it has been demonstrated that RalGPS2 supports TNT formation more in conditions of nutrient deficiency. Results obtained suggest the existence of two coexisting pathways, but more activates under different conditions. In this proposal, interaction between RalGPS2, LST1 and RalA establishes formation of a complex that under stress condition is active and allows the interaction between the RalA and Sec5. RalA-Sec5 interaction determines the assembly of multi-protein complex which controls TNTs formation. On the contrary, in proliferative stimulus conditions, while RalGPS2-LST1-RalA complex is still present and partially activated, it is outclassed by the activation of a distinct pathway in which GEFs of the RalGDS family, the RalA GTPase and Sec5 play a pivotal role. In such conditions, RalGDS GEFs are activated and interact with the RalA GTPase while promoting the GDP-GTP exchange. RalA in its active state also interacts with Sec5, allowing the assembly of the exocyst complex and so regulating the exocytosis.
Pacitto, Angela. "Towards structural and functional understanding of the Flcn/Fnip complex through its yeast orthologue Lst7/Lst4." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708934.
Full textEdholm, Gustav, and Xuechen Zuo. "A comparison between aconventional LSTM network and agrid LSTM network applied onspeech recognition." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230173.
Full textFu, Reid J. "CCG Realization with LSTM Hypertagging." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534236955413883.
Full textBorrello, Maria Teresa. "Reversible and irreversible LSD1 inhibitors." Thesis, University of East Anglia, 2016. https://ueaeprints.uea.ac.uk/59682/.
Full textNordin, Stensö Isak. "Predicting Tropical Thunderstorm Trajectories Using LSTM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231613.
Full textÅskväder är både farliga och livsviktiga bärare av vatten för stora delar av världen. Det är dock svårt att förutsäga åskcellernas banor, främst i tropiska områden. Detta beror till större delen på deras mindre storlek och kortare livslängd. Detta examensarbete undersöker hur väl ett neuralt nätverk, bestående av long short-term memory-lager (LSTM) kan förutsäga åskväders banor baserat på flera års blixtnedlslagsdata. Först klustras datan, och viktiga karaktärsdrag hämtas ut från den. Dessa används för att förutspå åskvädrens genomsnittliga position med hjälp av ett LSTMnätverk. En slumpmässig sökning genomförs sedan för att identifiera optimala parametrar för LSTM-modellen. Det fastslås att de banor som förutspås av LSTM-modellen är mycket närmare de sanna banorna, än de som förutspås av en linjär modell. Detta gäller i synnerhet för förutsägelser mer än 1 timme framåt. Värden som är vanliga för att bedöma prognosers träffsäkerhet beräknas för att jämföra LSTM-modellen och den linjära. Det visas att LSTM-modellen klart förbättrar förutsägelsernas träffsäkerhet jämfört med den linjära modellen.
Rogers, Joseph. "Effects of an LSTM Composite Prefetcher." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396842.
Full textSchelhaas, Wietze. "Predicting network performancein IoT environments using LSTM." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454062.
Full textNilson, Erik, and Arvid Renström. "LSTM-nätverk för generellt Atari 2600 spelande." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17174.
Full textBooks on the topic "LST1"
Finanzen, Austria Bundesministerium für. Lohnsteuerrichtlinien 1999: LStR 1999. 2nd ed. Wien: P. Dorner, 1999.
Find full textOklahoma. Dept. of Libraries. LSTA 5-year plan, 2003-2007. Oklahoma City, OK: Oklahoma Dept. of Libraries, 2002.
Find full textHumphreys, Ran. My days aboard LST 748. Lynn Haven, Fla: HCR Publications, 2001.
Find full textGene, Harter, ed. The saga of LST 224. Jackson, Tenn: Main Street Publishing, 2003.
Find full textD'Orta, Marcello. [In Afrika lst immer August]. [Tehran?]: [S.n.], 2000.
Find full textRose, Lewis, ed. Memories of the USS LST 694. [S.l: s.n., 1985.
Find full textLee, S. RELAP5 assessment using LSTF test data SB-CL-18. Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textLibrary, Maine State, Library Development Solutions (Firm), and Institute of Museum and Library Services (U.S.), eds. Maine shares: An evaluation of Maine's Five Year LSTA Plan. [Augusta, Me.]: Maine State Library, 2002.
Find full textBertung, Birgit. Kierkegaard, kristendom og konsekvens: Søren Kierkegaard lst logisk. [Copenhagen]: C.A. Reitzels forlag, 1994.
Find full textAssociation, United States LST, ed. Large slow target: A history of the LST. Toledo, Ohio: U.S. LST Association, 1986.
Find full textBook chapters on the topic "LST1"
Korstanje, Joos. "LSTM RNNs." In Advanced Forecasting with Python, 243–51. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7150-6_18.
Full textEelbode, Tom, Pieter Sinonquel, Raf Bisschops, and Frederik Maes. "Convolutional LSTM." In Computer-Aided Analysis of Gastrointestinal Videos, 121–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64340-9_14.
Full textWang, Ximin, Luyi Huang, Junlan Zhu, Wenbo He, Zhaopeng Qin, and Ming Yuan. "LSTM-Exploit: Intelligent Penetration Based on LSTM Tool." In Advances in Artificial Intelligence and Security, 84–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78615-1_8.
Full textAdenuga, Olukorede Tijani, Khumbulani Mpofu, and Ragosebo Kgaugelo Modise. "Application of ARIMA-LSTM for Manufacturing Decarbonization Using 4IR Concepts." In Lecture Notes in Mechanical Engineering, 115–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18326-3_12.
Full textManaswi, Navin Kumar. "RNN and LSTM." In Deep Learning with Applications Using Python, 115–26. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3516-4_9.
Full textAdam, Kazybek, Kamilya Smagulova, and Alex Pappachen James. "Memristive LSTM Architectures." In Modeling and Optimization in Science and Technologies, 155–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14524-8_12.
Full textNinagawa, Chuzo. "LSTM AI Modeling." In AI Time Series Control System Modelling, 67–90. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4594-6_4.
Full textZheng, Lin, Chaowei Qi, and Shibo Zhao. "Multivariate Passenger Flow Forecast Based on ACLB Model." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 104–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_12.
Full textHuynh, Manh, and Gita Alaghband. "Trajectory Prediction by Coupling Scene-LSTM with Human Movement LSTM." In Advances in Visual Computing, 244–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33720-9_19.
Full textGrósz, Tamás, and Mikko Kurimo. "LSTM-XL: Attention Enhanced Long-Term Memory for LSTM Cells." In Text, Speech, and Dialogue, 382–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83527-9_32.
Full textConference papers on the topic "LST1"
Di Pierro, Federico, L. Arrabito, A. Baquero Larriva, A. Berti, J. Bregeon, D. Depaoli, D. Dominis Prester, et al. "Monte Carlo Studies of Combined MAGIC and LST1 Observations." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0659.
Full textXing, Bowen, Lejian Liao, Dandan Song, Jingang Wang, Fuzheng Zhang, Zhongyuan Wang, and Heyan Huang. "Earlier Attention? Aspect-Aware LSTM for Aspect-Based Sentiment Analysis." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/738.
Full textChen, Zhenzhong, and Wanjie Sun. "Scanpath Prediction for Visual Attention using IOR-ROI LSTM." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/89.
Full textLi, Haifang, Yingce Xia, and Wensheng Zhang. "Finite Sample Analysis of LSTD with Random Projections and Eligibility Traces." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/331.
Full textBian, Song, Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato. "LSTA." In DAC '17: The 54th Annual Design Automation Conference 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3061639.3062280.
Full textZhu, Yu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. "What to Do Next: Modeling User Behaviors by Time-LSTM." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/504.
Full textHu, Weifei, Yihan He, Zhenyu Liu, Jianrong Tan, Ming Yang, and Jiancheng Chen. "A Hybrid Wind Speed Prediction Approach Based on Ensemble Empirical Mode Decomposition and BO-LSTM Neural Networks for Digital Twin." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16500.
Full textWang, Fuyong, Yun Zai, Jiuyu Zhao, and Siyi Fang. "Field Application of Deep Learning for Flow Rate Prediction with Downhole Temperature and Pressure." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21364-ms.
Full textLiao, Yabin, Biswas Poudel, Priyanshu Kumar, and Mark Sensemier. "Long Short-Term Memory Neural Networks for Predicting Dynamic Response of Structures of High Complexities." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-97025.
Full textCorreia, Jaqueline B., Marcos Pivetta, Givanildo Santana do Nascimento, and Karin Becker. "Comparing ARIMA and LSTM models to predict time series in the oil industry." In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/kdmile.2021.17470.
Full textReports on the topic "LST1"
Phipps, G. S., S. M. Gentry, J. M. Falls, P. J. Claassen, and G. J. Alder. TAOS/LS1 development final report. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/565592.
Full textWilliams, N. Characterization of LST Z Plane Signals. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833108.
Full textLee, S., B. D. Chung, and H. J. Kim. RELAP5 assessment using LSTF test data SB-CL-18. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10162957.
Full textBattaglia, Sebastiano. Targeting LSD1 Epigenetic Signature in Castration-Recurrent Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada612062.
Full textLin, Yiwei. BHC80 is Critical in Suppression of Snail-LSD1 Interaction and Breast Cancer Metastasis. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada576366.
Full textLin, Yiwei. BHC80 is Critical in Suppression of Snail-LSD1 Interaction and Breast Cancer Metastasis. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada603933.
Full textLin, Yiwei. BHC80 ss Critical in Suppression of Snail-LSD1 Interaction and Breast Cancer Metastasis. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada560278.
Full textStickland, David P. Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1215468.
Full textChen, Jian, Yufen Xie, Ruihao Liu, Zhigao Liu, Xiaozhou Long, Jinlong Huang, Haiwei Xiong, and Yinliang Li. The association between LSP1 rs3817198(T>C) polymorphism and breast cancer: a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2021. http://dx.doi.org/10.37766/inplasy2021.12.0127.
Full textVickers, Don, and Don Larson. LST CGM Generator and Viewer Final Report CRADA No. TSB-1558-98. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1410004.
Full text