Academic literature on the topic 'LSPR TUNING'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LSPR TUNING.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "LSPR TUNING"

1

Balitskii, Olexiy, Oleksandr Mashkov, Anastasiia Barabash, Viktor Rehm, Hany A. Afify, Ning Li, Maria S. Hammer, et al. "Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystals." Nanomaterials 12, no. 19 (October 4, 2022): 3469. http://dx.doi.org/10.3390/nano12193469.

Full text
Abstract:
Aliovalent-doped metal oxide nanocrystals exhibiting localized surface plasmons (LSPRs) are applied in systems that require reflection/scattering/absorption in infrared and optical transparency in visible. Indium tin oxide (ITO) is currently leading the field, but indium resources are known to be very restricted. Antimony-doped tin oxide (ATO) is a cheap candidate to substitute the ITO, but it exhibits less advantageous electronic properties and limited control of the LSPRs. To date, LSPR tuning in ATO NCs has been achieved electrochemically and by aliovalent doping, with a significant decrease in doping efficiency with an increasing doping level. Here, we synthesize plasmonic ATO nanocrystals (NCs) via a solvothermal route and demonstrate ligand exchange to tune the LSPR energies. Attachment of ligands acting as Lewis acids and bases results in LSPR peak shifts with a doping efficiency overcoming those by aliovalent doping. Thus, this strategy is of potential interest for plasmon implementations, which are of potential interest for infrared upconversion, smart glazing, heat absorbers, or thermal barriers.
APA, Harvard, Vancouver, ISO, and other styles
2

Lopatynskyi, A. M. "Smart nanocarriers for drug delivery: controllable LSPR tuning." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 4 (December 5, 2016): 358–65. http://dx.doi.org/10.15407/spqeo19.04.358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Chih-Yao, Ching-Yun Chien, Chih-Ming Wang, Rong-Sheng Lin, and I.-Chen Chen. "Plasmon Tuning of Liquid Gallium Nanoparticles through Surface Anodization." Materials 15, no. 6 (March 15, 2022): 2145. http://dx.doi.org/10.3390/ma15062145.

Full text
Abstract:
In this work, tunable plasmonic liquid gallium nanoparticles (Ga NPs) were prepared through surface anodizing of the particles. Shape deformation of the Ga NPs accompanied with dimpled surface topographies could be induced during electrochemical anodization, and the formation of the anodic oxide shell helps maintain the resulting change in the particle shape. The nanoscale dimple-like textures led to changes in the localized surface plasmon resonance (LSPR) wavelength. A maximal LSPR red-shift of ~77 nm was preliminarily achieved using an anodization voltage of 0.7 V. The experimental results showed that an increase in the oxide shell thickness yielded a negligible difference in the observed LSPR, and finite-difference time-domain (FDTD) simulations also suggested that the LSPR tunability was primarily determined by the shape of the deformed particles. The extent of particle deformation could be adjusted in a very short period of anodization time (~7 s), which offers an efficient way to tune the LSPR response of Ga NPs.
APA, Harvard, Vancouver, ISO, and other styles
4

Demydov, P. V., A. M. Lopatynskyi, І. І. Hudzenko, and V. I. Chegel. "The approaches for localized surface plasmon resonance wavelength position tuning. Short review." Semiconductor Physics, Quantum Electronics and Optoelectronics 24, no. 3 (August 26, 2021): 304–11. http://dx.doi.org/10.15407/spqeo24.03.304.

Full text
Abstract:
A unique feature of nanoparticles made from highly conductive materials (plasmonic nanoparticles) is that their localized surface plasmon resonance (LSPR) wavelength position can be tuned by changing the shape, size, composition and environment in accordance with the purpose of the application. In this paper, the main mechanisms of LSPR tuning that are available at the present time are reviewed. In particular, a widely used method for tuning the LSPR wavelength position is based on selecting the type of a plasmonic nanoparticle material such as gold, silver, copper, aluminum and gold-silver alloy. The examples of changing the resonance absorption position by using nanoparticles with different shapes and dimensions have been аlso demonstrated. Furthermore, works with less used LSPR tuning methods, such as controlled regulation of the distance between nanoparticles in one and two dimensions have been considered. The number of works is given, where the LSPR wavelength position can be also controlled by changing the environment in the vicinity of plasmonic nanoparticle: the substrate thickness, the thickness and dielectric parameters of the layer on the surface of the nanoparticle. Examples of active influence on the change in the wave position of LSPR by applying an electric potential and regulating plasma modes have been also discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Piantanida, Luca, Denys Naumenko, Emanuela Torelli, Monica Marini, Dennis M. Bauer, Ljiljana Fruk, Giuseppe Firrao, and Marco Lazzarino. "Plasmon resonance tuning using DNA origami actuation." Chemical Communications 51, no. 23 (2015): 4789–92. http://dx.doi.org/10.1039/c5cc00778j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ye, Shuai, Jun Song, Yuliang Tian, Linchun Chen, Dong Wang, Hanben Niu, and Junle Qu. "Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance." Nanoscale 7, no. 29 (2015): 12706–12. http://dx.doi.org/10.1039/c5nr03652f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Wei, Chao Ma, Ling Zhang, Bin Chen, Luyang Chen, and Heping Zeng. "Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering." Nanomaterials 9, no. 2 (February 12, 2019): 251. http://dx.doi.org/10.3390/nano9020251.

Full text
Abstract:
We report the tuning of localized surface plasmon resonance (LSPR) of nanoporous gold (NPG) by silica coating, which also affects the surface enhanced Raman scattering (SERS) of NPG. In this study, controllable silica shell is assembled on the NPG surface, and a fully silica thin layer causes more than 50 nm red-shift of LSPR band due to dielectric medium dependence. Additionally, ~1 nm silica coated NPG film shows excellent SERS enhancement, which is due to electromagnetic coupling between ligaments and local surface plasmon field enhancement within pores, and theoretical analysis indicates that silica coating further improves the coupling effect, which demonstrates the electromagnetic origin of the tuning of SERS effect.
APA, Harvard, Vancouver, ISO, and other styles
8

Hou, Hui, Limei Chen, Haili He, Lizhen Chen, Zhenlu Zhao, and Yongdong Jin. "Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation." Journal of Materials Chemistry B 3, no. 26 (2015): 5189–96. http://dx.doi.org/10.1039/c5tb00556f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahapatra, Niharendu, and Mintu Halder. "Facile reversible LSPR tuning through additive-induced self-aggregation and dissemination of Ag NPs: role of cyclodextrins and surfactants." RSC Adv. 4, no. 36 (2014): 18724–30. http://dx.doi.org/10.1039/c4ra01523a.

Full text
Abstract:
An easy and economical protocol for the reversible LSPR tuning of Ag NPs through cyclodextrin-induced self-aggregation and color fading, followed by surfactant-induced dissemination of self-assembly and consequent color reappearance.
APA, Harvard, Vancouver, ISO, and other styles
10

Lie, Shao Qing, Hong Yan Zou, Yong Chang, and Cheng Zhi Huang. "Tuning of the near-infrared localized surface plasmon resonance of Cu2−xSe nanoparticles with lysozyme-induced selective aggregation." RSC Adv. 4, no. 98 (2014): 55094–99. http://dx.doi.org/10.1039/c4ra05828c.

Full text
Abstract:
Poly(styrene sulfonic acid)sodium stabilized Cu2−xSe nanoparticles (PSS–Cu2−xSe NPs) with localized surface plasmon resonance (LSPR) absorption centered at 980 nm can be selectively aggregated by lysozyme (Lys) through the electrostatic attraction, giving rise to a red shift of the LSPR in the near-infrared (NIR) region.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "LSPR TUNING"

1

Piantanida, Luca. "DNA ORIGAMI ACTUATION AS A POWERFUL DYNAMIC AND TUNABLE ARCHITECTURE FOR PLASMONIC STRUCTURE." Doctoral thesis, Università degli studi di Trieste, 2015. http://hdl.handle.net/10077/11133.

Full text
Abstract:
2013/2014
In questa tesi presento il mio lavoro di ricerca di Dottorato in Nanotecnologie. Questo studio è concentrato sull'uso di nanotecnologia a DNA come strumento per la creazione di strutture nano-biologiche e funzionalizzazione di particelle d'oro. Le nano-particelle d'oro sono state largamente studiate e le loro proprietà sono state sfruttate per importanti applicazioni come la spettroscopia Raman, la rilevazione biologica e la terapia medica. Queste nano-particelle sono caratterizzate da una risonanza ottica plasmonica e proprietà di dispersione della luce ben definite ed esistono numerosi protocolli di provata efficienza per la loro funzionalizzazione chimica. Tra questi, il protocollo di auto-assemblaggio di DNA si è dimostrato eccellente nel comporre strutture di nano-particelle con dimensioni e forma controllate. Questo approccio è stato impiegato per l'ingegnerizzazione di proprietà ottiche, per la creazione di "hot spot” nel campo plasmonico in aggregati di nano-particelle e anche per la formazione di righelli plasmonici con dimeri di nano-particelle nei quali la loro spaziatura è controllata con precisione nanometrica. In questo studio confronto due strategie per la formazione di dimeri di nano-particelle d'oro usando l'ibridizzazione del DNA. Una di queste strategie mi ha permesso di raggiungere una al resa del 26% di formazioni di dimeri rispetto al totale delle AuNP, senza ulteriori procedure di filtrazione, dato che rappresenta il valore più alto riportato in letteratura; inoltre questo dato è stato replicato utilizzando sequenze di DNA molto corte, fino ad 11 nucleotidi, condizione che normalmente riduce l’efficienza del processo. Nella seconda parte della mia tesi, ho combinato le proprietà plasmoniche delle nano-particelle d'oro con strutture a DNA origami in modo da creare sistemi ibridi tra di loro. Questa combinazione mi ha permesso di esplorare architetture innovative per la il controllo della plasmonica con la prospettiva di essere un punto di partenza per lo sviluppo di biosensori. Ho sviluppato una strategia per un controllo innovativo, reversibile e continuo della risonanza plasmonica usando un'attuazione basata su DNA origami. Il meccanismo di attuazione è basato sull'ibridizzazione del DNA, in particolare si è visto uno spostamento del picco di risonanza fino a 6 nm utilizzando tre sequenza di DNA diverse. Il sistema proposto è potrà essere utilizzato per lo studio dei meccanismi di ibridazione di DNA in condizioni di stress controllato, oppure potrà essere usato come piattaforma per un controllo continuo della posizione della risonanza plasmonica o in spettroscopia Raman.
XXVII Ciclo
1986
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "LSPR TUNING"

1

Demydov, P. V., V. K. Lytvyn, A. M. Lopatynskyi, I. I. Hudzenko, and V. I. Chegel. "LSPR Tuning by Variable Morphology of Gold Nanoshells." In 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Devender, Saroj Bala, Heena Wadhwa, Geeta Kandhol, Suman Mahendia, Fakir Chand, and Shyam Kumar. "Tuning of LSPR of gold-silver alloy nanoparticles with their composition." In PROCEEDINGS OF THE NATIONAL CONFERENCE ON RECENT ADVANCES IN CONDENSED MATTER PHYSICS: RACMP-2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5097117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hui, Gong Li, and Lyu Xian Yang. "The Method and Mechanism of Tuning LSPR on The Biased Metallic Nanosphere." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anthonysamy, Baskar, Arun Kumar Prasad, and Babasaheb Shinde. "Tuning of Brake Force Distribution for Pickup Truck Vehicle LSPV Brake System During Cornering Maneuver." In Brake Colloquium & Exhibition - 35th Annual. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-2491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography