Journal articles on the topic 'LRRK2 GENE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LRRK2 GENE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Civiero, Laura, and Luigi Bubacco. "Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?" Biochemical Society Transactions 40, no. 5 (September 19, 2012): 1095–101. http://dx.doi.org/10.1042/bst20120123.
Full textLangston, Rebekah G., Iakov N. Rudenko, and Mark R. Cookson. "The function of orthologues of the human Parkinson's disease gene LRRK2 across species: implications for disease modelling in preclinical research." Biochemical Journal 473, no. 3 (January 25, 2016): 221–32. http://dx.doi.org/10.1042/bj20150985.
Full textSuzzi, Stefano, Reiner Ahrendt, Stefan Hans, Svetlana A. Semenova, Avinash Chekuru, Paul Wirsching, Volker Kroehne, et al. "Deletion of lrrk2 causes early developmental abnormalities and age-dependent increase of monoamine catabolism in the zebrafish brain." PLOS Genetics 17, no. 9 (September 13, 2021): e1009794. http://dx.doi.org/10.1371/journal.pgen.1009794.
Full textChung, Sun-Ku, and Seo-Young Lee. "Advances in Gene Therapy Techniques to Treat LRRK2 Gene Mutation." Biomolecules 12, no. 12 (December 5, 2022): 1814. http://dx.doi.org/10.3390/biom12121814.
Full textMaset, Andrea, Marco Albanesi, Antonio di Soccio, Martina Canova, Marco dal Maschio, and Claudia Lodovichi. "Aberrant Patterns of Sensory-Evoked Activity in the Olfactory Bulb of LRRK2 Knockout Mice." Cells 10, no. 11 (November 17, 2021): 3212. http://dx.doi.org/10.3390/cells10113212.
Full textXiong, Yulan, Valina L. Dawson, and Ted M. Dawson. "LRRK2 GTPase dysfunction in the pathogenesis of Parkinson's disease." Biochemical Society Transactions 40, no. 5 (September 19, 2012): 1074–79. http://dx.doi.org/10.1042/bst20120093.
Full textFilippini, Alice, Massimo Gennarelli, and Isabella Russo. "Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years." Biochemical Society Transactions 49, no. 3 (May 7, 2021): 1375–84. http://dx.doi.org/10.1042/bst20201092.
Full textIkezu, Tsuneya, Lacin Koro, Benjamin Wolozin, Francis A. Farraye, Audrey J. Strongosky, and Zbigniew K. Wszolek. "Crohn’s and Parkinson’s Disease-Associated LRRK2 Mutations Alter Type II Interferon Responses in Human CD14+ Blood Monocytes Ex Vivo." Journal of Neuroimmune Pharmacology 15, no. 4 (March 16, 2020): 794–800. http://dx.doi.org/10.1007/s11481-020-09909-8.
Full textIseki, Tatou, Yuzuru Imai, and Nobutaka Hattori. "Is Glial Dysfunction the Key Pathogenesis of LRRK2-Linked Parkinson’s Disease?" Biomolecules 13, no. 1 (January 15, 2023): 178. http://dx.doi.org/10.3390/biom13010178.
Full textPérez-Carrión, María Dolores, Inmaculada Posadas, Javier Solera, and Valentín Ceña. "LRRK2 and Proteostasis in Parkinson’s Disease." International Journal of Molecular Sciences 23, no. 12 (June 18, 2022): 6808. http://dx.doi.org/10.3390/ijms23126808.
Full textOnishi, Keisuke, Runyi Tian, Bo Feng, Yiqiong Liu, Junkai Wang, Yinan Li, and Yimin Zou. "LRRK2 mediates axon development by regulating Frizzled3 phosphorylation and growth cone–growth cone communication." Proceedings of the National Academy of Sciences 117, no. 30 (July 8, 2020): 18037–48. http://dx.doi.org/10.1073/pnas.1921878117.
Full textSantos-Rebouças, Cíntia Barros, Cláudia Bueno Abdalla, Paloma Águia Martins, Fábio José Rodrigues Baldi, Jussara Mendonça Santos, Luciana Branco Motta, Margarete Borges de Borges, et al. "LRRK2p.G2019S Mutation Is Not Common among Alzheimer’s Disease Patients in Brazil." Disease Markers 27, no. 1 (2009): 13–16. http://dx.doi.org/10.1155/2009/298182.
Full textOgata, Jun, Kentaro Hirao, Kenya Nishioka, Arisa Hayashida, Yuanzhe Li, Hiroyo Yoshino, Soichiro Shimizu, Nobutaka Hattori, and Yuzuru Imai. "A Novel LRRK2 Variant p.G2294R in the WD40 Domain Identified in Familial Parkinson’s Disease Affects LRRK2 Protein Levels." International Journal of Molecular Sciences 22, no. 7 (April 2, 2021): 3708. http://dx.doi.org/10.3390/ijms22073708.
Full textLiu, Weiwei, Xia’nan Liu, Yu Li, Junjie Zhao, Zhenshan Liu, Zhuqin Hu, Ying Wang, et al. "LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella Typhimurium infection." Journal of Experimental Medicine 214, no. 10 (August 18, 2017): 3051–66. http://dx.doi.org/10.1084/jem.20170014.
Full textGuaitoli, Giambattista, Bernd K. Gilsbach, Francesco Raimondi, and Christian Johannes Gloeckner. "First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein." Biochemical Society Transactions 44, no. 6 (December 2, 2016): 1635–41. http://dx.doi.org/10.1042/bst20160226.
Full textIto, Genta, and Takeshi Iwatsubo. "Re-examination of the dimerization state of leucine-rich repeat kinase 2: predominance of the monomeric form." Biochemical Journal 441, no. 3 (January 16, 2012): 987–98. http://dx.doi.org/10.1042/bj20111215.
Full textJeong, Ga Ram, and Byoung Dae Lee. "Pathological Functions of LRRK2 in Parkinson’s Disease." Cells 9, no. 12 (November 30, 2020): 2565. http://dx.doi.org/10.3390/cells9122565.
Full textLee, Seo-Young, and Sun-Ku Chung. "Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations." Stem Cells International 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/2725670.
Full textLewis, Patrick A., and Dario R. Alessi. "Deciphering the function of leucine-rich repeat kinase 2 and targeting its dysfunction in disease1." Biochemical Society Transactions 40, no. 5 (September 19, 2012): 1039–41. http://dx.doi.org/10.1042/bst20120178.
Full textLevy, Daniel R., Atul Udgata, Panagiotis Tourlomousis, Martyn F. Symmons, Lee J. Hopkins, Clare E. Bryant, and Nicholas J. Gay. "The Parkinson's disease–associated kinase LRRK2 regulates genes required for cell adhesion, polarization, and chemotaxis in activated murine macrophages." Journal of Biological Chemistry 295, no. 31 (February 28, 2020): 10857–67. http://dx.doi.org/10.1074/jbc.ra119.011842.
Full textThakur, Gunjan, Vikas Kumar, Keun Woo Lee, and Chungkil Won. "Structural Insights and Development of LRRK2 Inhibitors for Parkinson’s Disease in the Last Decade." Genes 13, no. 8 (August 11, 2022): 1426. http://dx.doi.org/10.3390/genes13081426.
Full textLiou, Geou-Yarh, and Kathleen A. Gallo. "New biochemical approaches towards understanding the Parkinson's disease-associated kinase, LRRK2." Biochemical Journal 424, no. 1 (October 23, 2009): e1-e3. http://dx.doi.org/10.1042/bj20091540.
Full textManzoni, Claudia. "LRRK2 and autophagy: a common pathway for disease." Biochemical Society Transactions 40, no. 5 (September 19, 2012): 1147–51. http://dx.doi.org/10.1042/bst20120126.
Full textWallings, Rebecca L., and Malú G. Tansey. "LRRK2 regulation of immune-pathways and inflammatory disease." Biochemical Society Transactions 47, no. 6 (November 26, 2019): 1581–95. http://dx.doi.org/10.1042/bst20180463.
Full textIannotta, Lucia, and Elisa Greggio. "LRRK2 signaling in neurodegeneration: two decades of progress." Essays in Biochemistry 65, no. 7 (December 2021): 859–72. http://dx.doi.org/10.1042/ebc20210013.
Full textAraki, Miho, Kyohei Ito, Sho Takatori, Genta Ito, and Taisuke Tomita. "BORCS6 is involved in the enlargement of lung lamellar bodies in Lrrk2 knockout mice." Human Molecular Genetics 30, no. 17 (June 2, 2021): 1618–31. http://dx.doi.org/10.1093/hmg/ddab146.
Full textMarchand, Antoine, Alessia Sarchione, Panagiotis S. Athanasopoulos, Hélène Bauderlique-Le Roy, Liesel Goveas, Romain Magnez, Matthieu Drouyer, et al. "A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively." Cells 11, no. 6 (March 17, 2022): 1018. http://dx.doi.org/10.3390/cells11061018.
Full textKotlica, Boba, Momčilo Ristanović, and Ivana Novaković. "Analysis of rs34637584 polymorphism in the LRRK2 gene in patients with Parkinson's disease." Medicinski podmladak 73, no. 3 (2022): 33–37. http://dx.doi.org/10.5937/mp73-35222.
Full textLi, Tianxia, Bo Ning, Lingbo Kong, Bingling Dai, Xiaofei He, Joseph M. Thomas, Akira Sawa, Christopher A. Ross, and Wanli W. Smith. "A LRRK2 GTP Binding Inhibitor, 68, Reduces LPS-Induced Signaling Events and TNF-α Release in Human Lymphoblasts." Cells 10, no. 2 (February 23, 2021): 480. http://dx.doi.org/10.3390/cells10020480.
Full textToh, Joanne, Ling Ling Chua, Patrick Ho, Edwin Sandanaraj, Carol Tang, Hongyan Wang, and Eng King Tan. "Identification of Targets from LRRK2 Rescue Phenotypes." Cells 10, no. 1 (January 5, 2021): 76. http://dx.doi.org/10.3390/cells10010076.
Full textSloan, Maximilian, Javier Alegre-Abarrategui, and Richard Wade-Martins. "Insights into LRRK2 function and dysfunction from transgenic and knockout rodent models." Biochemical Society Transactions 40, no. 5 (September 19, 2012): 1080–85. http://dx.doi.org/10.1042/bst20120151.
Full textHaugarvoll, Kristoffer, Ryan J. Uitti, Matthew J. Farrer, and Zbigniew K. Wszolek. "LRRK2 Gene and Tremor-Dominant Parkinsonism." Archives of Neurology 63, no. 9 (September 1, 2006): 1346. http://dx.doi.org/10.1001/archneur.63.9.1346-b.
Full textCiampelli, Cristina, Grazia Galleri, Silvia Puggioni, Milena Fais, Lucia Iannotta, Manuela Galioto, Marta Becciu, et al. "Inhibition of the Exocyst Complex Attenuates the LRRK2 Pathological Effects." International Journal of Molecular Sciences 24, no. 16 (August 10, 2023): 12656. http://dx.doi.org/10.3390/ijms241612656.
Full textIto, Genta, and Naoko Utsunomiya-Tate. "Overview of the Impact of Pathogenic LRRK2 Mutations in Parkinson’s Disease." Biomolecules 13, no. 5 (May 16, 2023): 845. http://dx.doi.org/10.3390/biom13050845.
Full textGalper, Jasmin, Woojin S. Kim, and Nicolas Dzamko. "LRRK2 and Lipid Pathways: Implications for Parkinson’s Disease." Biomolecules 12, no. 11 (October 30, 2022): 1597. http://dx.doi.org/10.3390/biom12111597.
Full textKalogeropulou, Alexia F., Jordana B. Freemantle, Pawel Lis, Edmundo G. Vides, Nicole K. Polinski, and Dario R. Alessi. "Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity." Biochemical Journal 477, no. 22 (November 27, 2020): 4397–423. http://dx.doi.org/10.1042/bcj20200458.
Full textDe Wit, Tina, Veerle Baekelandt, and Evy Lobbestael. "LRRK2 Phosphorylation: Behind the Scenes." Neuroscientist 24, no. 5 (January 31, 2018): 486–500. http://dx.doi.org/10.1177/1073858418756309.
Full textCookson, Mark R. "Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease." Biochemical Society Transactions 44, no. 6 (December 2, 2016): 1603–10. http://dx.doi.org/10.1042/bst20160228.
Full textRivero-Ríos, Pilar, Maria Romo-Lozano, Belén Fernández, Elena Fdez, and Sabine Hilfiker. "Distinct Roles for RAB10 and RAB29 in Pathogenic LRRK2-Mediated Endolysosomal Trafficking Alterations." Cells 9, no. 7 (July 17, 2020): 1719. http://dx.doi.org/10.3390/cells9071719.
Full textCheng, Xiaojuan, Xilin Wu, Yuying Zhang, Weian Li, Linjuan Feng, Hanlin You, Siyu Yang, Dongping Yang, Xiaochun Chen, and Xiaodong Pan. "LRRK2 Deficiency Aggravates Sleep Deprivation-Induced Cognitive Loss by Perturbing Synaptic Pruning in Mice." Brain Sciences 12, no. 9 (September 6, 2022): 1200. http://dx.doi.org/10.3390/brainsci12091200.
Full textRivero-Ríos, Pilar, Patricia Gómez-Suaga, Belén Fernández, Jesús Madero-Pérez, Andrew J. Schwab, Allison D. Ebert, and Sabine Hilfiker. "Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson's disease." Biochemical Society Transactions 43, no. 3 (June 1, 2015): 390–95. http://dx.doi.org/10.1042/bst20140301.
Full textEsteves, A. Raquel, and Sandra M. Cardoso. "LRRK2 at the Crossroad Between Autophagy and Microtubule Trafficking." Neuroscientist 23, no. 1 (July 8, 2016): 16–26. http://dx.doi.org/10.1177/1073858415616558.
Full textBonet-Ponce, Luis, Alexandra Beilina, Chad D. Williamson, Eric Lindberg, Jillian H. Kluss, Sara Saez-Atienzar, Natalie Landeck, et al. "LRRK2 mediates tubulation and vesicle sorting from lysosomes." Science Advances 6, no. 46 (November 2020): eabb2454. http://dx.doi.org/10.1126/sciadv.abb2454.
Full textWang, Shijie, and Andrew B. West. "Caught in the act: LRRK2 in exosomes." Biochemical Society Transactions 47, no. 2 (March 5, 2019): 663–70. http://dx.doi.org/10.1042/bst20180467.
Full textChittoor-Vinod, Vinita G., R. Jeremy Nichols, and Birgitt Schüle. "Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism." International Journal of Molecular Sciences 22, no. 3 (January 21, 2021): 1045. http://dx.doi.org/10.3390/ijms22031045.
Full textKalogeropulou, Alexia F., Jing Zhao, Marc F. Bolliger, Anna Memou, Shreya Narasimha, Tyler P. Molitor, William H. Wilson, Hardy J. Rideout, and R. Jeremy Nichols. "P62/SQSTM1 is a novel leucine-rich repeat kinase 2 (LRRK2) substrate that enhances neuronal toxicity." Biochemical Journal 475, no. 7 (April 9, 2018): 1271–93. http://dx.doi.org/10.1042/bcj20170699.
Full textТ.С., Усенко,, Башарова, К.С., Безрукова, А.И., Николаев, М.А., Милюхина, И.В., Байдакова, Г.В., Захарова, Е.Ю., and Пчелина, С.Н. "Selective inhibition of LRRK2 activity as an approach to the treatment of Parkinson's disease." Nauchno-prakticheskii zhurnal «Medicinskaia genetika, no. 12 (December 26, 2022): 26–29. http://dx.doi.org/10.25557/2073-7998.2022.12.26-29.
Full textGreggio, Elisa. "Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease." Biochemical Society Transactions 40, no. 5 (September 19, 2012): 1058–62. http://dx.doi.org/10.1042/bst20120054.
Full textVlachakis, Dimitrios, Nikolaos Labrou, Costas Iliopoulos, John Hardy, Patrick Lewis, Hardy Rideout, and Daniah Trabzuni. "Insights into the Influence of Specific Splicing Events on the Structural Organization of LRRK2." International Journal of Molecular Sciences 19, no. 9 (September 16, 2018): 2784. http://dx.doi.org/10.3390/ijms19092784.
Full textTakagawa, Tetsuya, Atsushi Kitani, Ivan Fuss, Beth Levine, Steven R. Brant, Inga Peter, Masaki Tajima, Shiro Nakamura, and Warren Strober. "An increase in LRRK2 suppresses autophagy and enhances Dectin-1–induced immunity in a mouse model of colitis." Science Translational Medicine 10, no. 444 (June 6, 2018): eaan8162. http://dx.doi.org/10.1126/scitranslmed.aan8162.
Full text