Journal articles on the topic 'LPCVD'

To see the other types of publications on this topic, follow the link: LPCVD.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'LPCVD.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, Tiao‐Yuan, Donald J. Coleman, and James L. Paterson. "LPCVD Oxide/LPCVD Nitride Stacks for Interpoly Dielectrics." Journal of The Electrochemical Society 132, no. 6 (June 1, 1985): 1406–9. http://dx.doi.org/10.1149/1.2114133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Shaoqing, Wei Ji, Yaru Wang, Jiantao Wei, Lianchang Qiu, Chong Chen, Xiaojun Jiang, Qingxuan Ran, and Rihong Han. "Comparative Study of Corrosion Behavior of LPCVD-Ti0.17Al0.83N and PVD-Ti1−xAlxN Coatings." Coatings 12, no. 6 (June 15, 2022): 835. http://dx.doi.org/10.3390/coatings12060835.

Full text
Abstract:
In the present work, a low-pressure chemical vapor deposition (LPCVD) Ti0.17Al0.83N and state-of-the-art arc ion plating PVD-Ti1−xAlxN (x = 0.25, 0.55, 0.60, 0.67) coatings were deposited on cemented carbide substrate. The morphological, structural, and electrochemical properties of LPCVD-Ti0.17Al0.83N and PVD-Ti1−xAlxN coatings were compared. The X-ray diffraction (XRD) results and scanning electron microscopy (SEM) images revealed that the LPCVD-Ti0.17Al0.83N coating had a face-centered cubic (fcc) structure, while presenting a crack-free surface morphology and a compressive residual stress of −131.9 MPa. The PVD coatings with a composition of x ≤ 0.60 had an fcc structure, while the PVD-Ti0.33Al0.67N coating consisted of fcc and w-AlN phases. The results of the electrochemical corrosion test showed that the LPCVD-Ti0.17Al0.83N coating had the lowest corrosion current density in a 3.5 wt.% NaCl solution. After a 20-day immersion corrosion test in a 5 mol/L HCl solution, the LPCVD-Ti0.17Al0.83N coating displayed higher stability than the PVD-Ti1−xAlxN coating. The results of electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analysis revealed that more uniform and denser passivation film, as well as higher Al2O3 proportion in the Al2O3/TiO2 composite passive layer, led to the outstanding corrosion resistance of the LPCVD-Ti0.17Al0.83N coating.
APA, Harvard, Vancouver, ISO, and other styles
3

Parkhomenko, I. N., I. A. Romanov, M. A. Makhavikou, L. A. Vlasukova, G. D. Ivlev, F. F. Komarov, N. S. Kovalchuk, et al. "Effect of thermal and pulse laser annealing on photoluminescence of CVD silicon nitride films." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 55, no. 2 (June 28, 2019): 225–31. http://dx.doi.org/10.29235/1561-2430-2019-55-2-225-231.

Full text
Abstract:
The light-emitting properties of Si-rich silicon nitride films deposited on the Si (100) substrate by plasma-enhanced (PECVD) and low-pressure chemical vapor deposition (LPCVD) have been investigated. In spite of the similar stoichiometry (SiN1.1), nitride films fabricated by different techniques emit in different spectral ranges. Photoluminescence (PL) maxima lay in red (640 nm) and blue (470 nm) spectral range for the PECVD and LPCVD SiN1.1 films, respectively. It has been shown that equilibrium furnace annealing and laser annealing by ruby laser (694 nm, 70 ns) affect PL spectra of PECVD and LPCVD SiN1.1 in a different way. Furnace annealing at 600 °C results in a significant increase of the PL intensity of the PECVD film, while annealing of LPCVD films result only in PL quenching. It has been concluded that laser annealing is not appropriate for the PECVD film. The dominated red band in the PL spectrum of the PECVD film monotonically decreases with increasing an energy density of laser pulses from 0.45 to 1.4 J/cm2. Besides, the ablation of PECVD nitride films is observed after irradiation by laser pulses with an energy density of > 1 J/cm2. This effect is accompanied by an increase in blue emission attributed to the formation of a polysilicon layer under the nitride film. In contrast, the LPCVD film demonstrates the high stability to pulsed laser exposure. Besides, an increase in the PL intensity for LPCVD films is observed after irradiation by a double laser pulse (1.4 + 2 J/cm2) which has not been achieved by furnace annealing.
APA, Harvard, Vancouver, ISO, and other styles
4

Ghadi, Hemant, Joe F. McGlone, Evan Cornuelle, Zixuan Feng, Yuxuan Zhang, Lingyu Meng, Hongping Zhao, Aaron R. Arehart, and Steven A. Ringel. "Deep level defects in low-pressure chemical vapor deposition grown (010) β-Ga2O3." APL Materials 10, no. 10 (October 1, 2022): 101110. http://dx.doi.org/10.1063/5.0101829.

Full text
Abstract:
This study provides the full-bandgap evaluation of defect state distributions in beta phase gallium oxide (β-Ga2O3) grown by low-pressure chemical vapor deposition (LPCVD) on (010) β-Ga2O3 substrates at high growth of up to 20 µm/h. Deep-level optical spectroscopy and deep-level transient spectroscopy measurements applied to Ni/β-Ga2O3 Schottky diodes revealed the presence of a previously unreported defect state at EC-3.6 eV, which dominated the overall trap distribution in LPCVD grown material. However, states at EC-0.8 eV, EC-2.0 eV, and EC-4.4. eV were also detected, similar to prior studies on β-Ga2O3 grown by other methods, with similar or lower concentrations for the LPCVD samples. The EC-0.8 eV and EC-2.0 eV states were previously connected to residual Fe impurities and gallium vacancies, respectively. The total concentration of traps in the LPCVD material was on par with or lower than the state-of-the-art metal–organic chemical vapor deposition-grown materials despite the much higher growth rate, and the distribution of states showed negligible dependence on SiCl4 flow rate and doping concentration. These results demonstrate that the high growth rate of LPCVD-grown β-Ga2O3 is very promising for achieving thick, low defect density, and high-quality layers needed for multi-kV device applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Lifshitz, N., D. S. Williams, C. D. Capio, and J. M. Brown. "Selective Molybdenum Deposition by LPCVD." Journal of The Electrochemical Society 134, no. 8 (August 1, 1987): 2061–67. http://dx.doi.org/10.1149/1.2100820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yokoyama, N., K. Hinode, and Y. Homma. "LPCVD Titanium Nitride for ULSIs." Journal of The Electrochemical Society 138, no. 1 (January 1, 1991): 190–95. http://dx.doi.org/10.1149/1.2085535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LOISEL, B., L. HAJI, and M. GUENDOUZ. "LPCVD SILICON FOR ACTIVE DEVICES." Le Journal de Physique Colloques 50, no. C5 (May 1989): C5–467—C5–477. http://dx.doi.org/10.1051/jphyscol:1989558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bourhila, N., J. Torres, J. Palleau, C. Bernard, and R. Madar. "Copper LPCVD for advanced technology." Microelectronic Engineering 33, no. 1-4 (January 1997): 25–30. http://dx.doi.org/10.1016/s0167-9317(96)00027-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, W. H., T. F. Lei, T. S. Chao, K. S. Chou, and Y. N. Liu. "Particle contaminations in LPCVD polysilicon." Electronics Letters 31, no. 3 (February 2, 1995): 239–41. http://dx.doi.org/10.1049/el:19950114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zambov, L. M. "Optimum Design of LPCVD Reactors." Le Journal de Physique IV 05, no. C5 (June 1995): C5–269—C5–276. http://dx.doi.org/10.1051/jphyscol:1995531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Schlote, J., K. Tittelbach-Helmrich, B. Tillack, B. Kuck, and T. Hünlich. "Systematic Classification of LPCVD Processes." Le Journal de Physique IV 05, no. C5 (June 1995): C5–283—C5–290. http://dx.doi.org/10.1051/jphyscol:1995533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Stoffel, A., A. Kovács, W. Kronast, and B. Müller. "LPCVD against PECVD for micromechanical applications." Journal of Micromechanics and Microengineering 6, no. 1 (March 1, 1996): 1–13. http://dx.doi.org/10.1088/0960-1317/6/1/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sachs, E., G. Prueger, and R. Guerrieri. "An equipment model for polysilicon LPCVD." IEEE Transactions on Semiconductor Manufacturing 5, no. 1 (1992): 3–13. http://dx.doi.org/10.1109/66.121971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

WANG, JI-TAO, SHI-LI ZHANG, YONG-FA WANG, WEI ZHANG, ZHENG-CHANG CHEN, KE-YUN ZHANG, and YUAN-FANG WANG. "MODELING OF LPCVD SILICON NITRIDE PROCESS." Le Journal de Physique Colloques 50, no. C5 (May 1989): C5–67—C5–72. http://dx.doi.org/10.1051/jphyscol:1989511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Halova, E., S. Alexandrova, A. Szekeres, and M. Modreanu. "LPCVD-silicon oxynitride films: interface properties." Microelectronics Reliability 45, no. 5-6 (May 2005): 982–85. http://dx.doi.org/10.1016/j.microrel.2004.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lai, M. Z., P. S. Lee, and A. Agarwal. "Thermal effects on LPCVD amorphous silicon." Thin Solid Films 504, no. 1-2 (May 2006): 145–48. http://dx.doi.org/10.1016/j.tsf.2005.09.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jafari, A., M. Ghoranneviss, and M. R. Hantehzadeh. "Morphology Control of Graphene by LPCVD." Journal of Fusion Energy 34, no. 3 (December 27, 2014): 532–39. http://dx.doi.org/10.1007/s10894-014-9836-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Modreanu, M., N. Tomozeiu, P. Cosmin, and Mariuca Gartner. "Optical properties of LPCVD silicon oxynitride." Thin Solid Films 337, no. 1-2 (January 1999): 82–84. http://dx.doi.org/10.1016/s0040-6090(98)01189-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Patel, N. S., A. Rajadhyaksha, and J. D. Boone. "Supervisory Control of LPCVD Silicon Nitride." IEEE Transactions on Semiconductor Manufacturing 18, no. 4 (November 2005): 584–91. http://dx.doi.org/10.1109/tsm.2005.858504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Krekeler, Tobias, and Werner Mader. "Abscheidung von nanostrukturiertem SnO2 über LPCVD." Zeitschrift für anorganische und allgemeine Chemie 638, no. 10 (August 2012): 1588. http://dx.doi.org/10.1002/zaac.201204044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hillman, J. T., D. W. Studiner, M. J. Rice, and C. Arena. "Properties of LPCVD TiN barrier layers." Microelectronic Engineering 19, no. 1-4 (September 1992): 375–78. http://dx.doi.org/10.1016/0167-9317(92)90457-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tompkins, Harland G., Ken Seddon, Lisa K. Garling, and Peter Fejes. "Controlled crystallization of LPCVD amorphous silicon." Thin Solid Films 272, no. 1 (January 1996): 93–98. http://dx.doi.org/10.1016/0040-6090(95)06979-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Meguro, Kazuki, Tsugutada Narita, Kaon Noto, and Hideki Nakazawa. "Formation of an Interfacial Buffer Layer for 3C-SiC Heteroepitaxy on AlN/Si Substrates." Materials Science Forum 778-780 (February 2014): 251–54. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.251.

Full text
Abstract:
We have formed a SiC interfacial buffer layer on AlN/Si substrates at a low temperature by low-pressure chemical vapor deposition (LPCVD) using monomethylsilane (CH3SiH3; MMS), and grew 3C-SiC films on the low-temperature buffer layer by LPCVD using MMS. We investigated the surface morphology and crystallinity of the grown SiC films. It was found that the formation of the SiC buffer layer suppressed the outdiffusion of Al and N atoms from the AlN intermediate layer to the SiC films and further improved the surface morphology and crystallinity of the films.
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Hsiang-Chun, Hsien-Chin Chiu, Chong-Rong Huang, Hsuan-Ling Kao, and Feng-Tso Chien. "High Threshold Voltage Normally off Ultra-Thin-Barrier GaN MISHEMT with MOCVD-Regrown Ohmics and Si-Rich LPCVD-SiNx Gate Insulator." Energies 13, no. 10 (May 14, 2020): 2479. http://dx.doi.org/10.3390/en13102479.

Full text
Abstract:
A high threshold voltage (VTH) normally off GaN MISHEMTs with a uniform threshold voltage distribution (VTH = 4.25 ± 0.1 V at IDS = 1 μA/mm) were demonstrated by the selective area ohmic regrowth technique together with an Si-rich LPCVD-SiNx gate insulator. In the conventional GaN MOSFET structure, the carriers were induced by the inversion channel at a high positive gate voltage. However, this design sacrifices the channel mobility and reliability because a huge number of carriers are beneath the gate insulator directly during operation. In this study, a 3-nm ultra-thin Al0.25Ga0.75N barrier was adopted to provide a two-dimensional electron gas (2DEG) channel underneath the gate terminal and selective area MOCVD-regrowth layer to improve the ohmic contact resistivity. An Si-rich LPCVD-SiNx gate insulator was employed to absorb trace oxygen contamination on the GaN surface and to improve the insulator/GaN interface quality. Based on the breakdown voltage, current density, and dynamic RON measured results, the proposed LPCVD-MISHEMT provides a potential candidate solution for switching power electronics.
APA, Harvard, Vancouver, ISO, and other styles
25

Sang, Ling, Jing Hua Xia, Liang Tian, Fei Yang, Rui Jin, and Jun Min Wu. "Effect of the Field Oxidation Process on the Electrical Characteristics of 6500V 4H-SiC JBS Diodes." Materials Science Forum 1014 (November 2020): 144–48. http://dx.doi.org/10.4028/www.scientific.net/msf.1014.144.

Full text
Abstract:
The effect of the field oxidation process on the electrical characteristics of 6500V 4H-SiC JBS diodes is studied. The oxide thickness and field plate length have an effect on the reverse breakdown voltage of the SiC JBS diode. According the simulation results, we choose the optimal thickness of the oxide layer and field plate length of the SiC JBS diode. Two different field oxide deposition processes, which are plasma enhanced chemical vapor deposition (PECVD) and low pressure chemical vapor deposition (LPCVD), are compared in our paper. When the reverse voltage is 6600V, the reverse leakage current of SiC JBS diodes with the field oxide layer obtained by LPCVD process is 0.7 μA, which is 60% lower than that of PECVD process. When the forward current is 25 A, the forward voltage of SiC JBS diodes with the field oxide layer obtained by LPCVD process is 3.75 V, which is 10% higher than that of PECVD process. There should be a trade-off between the forward and reverse characteristics in the actual high power and high temperature applications.
APA, Harvard, Vancouver, ISO, and other styles
26

Salmasi, Armin, and Eskandar Keshavarz Alamdari. "Effect of Introducing Free Gaseous Radicals of Trichlorosilane and Ammonia Precursors on Growth and Characteristics of LPCVD a-SiNx Ultra Thin Films." Advanced Materials Research 829 (November 2013): 401–9. http://dx.doi.org/10.4028/www.scientific.net/amr.829.401.

Full text
Abstract:
Preparation and characteristics of amorphous silicon nitride (a-SiNx) thin films deposited by low pressure chemical vapor deposition (LPCVD) are investigated. Free gaseous radicals of trichlorosilane (TCS) and ammonia (NH3) are produced by passing each of the precursor gases separately over Pt-Ir/Al2O3 catalyst at the temperature of 600 C. Kinetics studies of the LPCVD are carried out in different total pressures, NH3/TCS flow rate ratios and temperatures. Surface topography, chemical concentrations, growth rate and thickness are studied by Ellipsometry, x-ray photo-electron spectroscopy (XPS), atomic force microscopy (AFM) and auger depth profiling (ADP). Analysis of experiments indicates that at the temperatures between 730 C and 830 C, the growth rate of thin films follows an Arrhenius behavior with activation energy of 166.3 KJ.mol-1. The measured hydrogen contamination in a-SiNx ultra thin films is 1.05 at% which is 17 times lower than the corresponding contamination in the films produced by (PECVD) and 3.4 times lower than the contamination in the LPCVD thin films with silane (SiH4) or dichlorosilane (DCS) and Ammonia. The surface topography of the prepared films is smooth and uniform and the thickness varies between 23 and 101 nanometers.
APA, Harvard, Vancouver, ISO, and other styles
27

Lu, Zonghuan, Xin Sun, Yu Xiang, Gwo-Ching Wang, Morris A. Washington, and Toh-Ming Lu. "Large scale epitaxial graphite grown on twin free nickel(111)/spinel substrate." CrystEngComm 22, no. 1 (2020): 119–29. http://dx.doi.org/10.1039/c9ce01515a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shi, Y. G., D. Wang, J. C. Zhang, P. Zhang, X. F. Shi, and Y. Hao. "Fabrication of single-crystal few-layer graphene domains on copper by modified low-pressure chemical vapor deposition." CrystEngComm 16, no. 32 (2014): 7558–63. http://dx.doi.org/10.1039/c4ce00744a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Srivastava, Shubhda, Shubhendra K. Jain, Govind Gupta, T. D. Senguttuvan, and Bipin Kumar Gupta. "Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature." RSC Advances 10, no. 2 (2020): 1007–14. http://dx.doi.org/10.1039/c9ra08707a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Williams, D. S., and E. A. Dein. "LPCVD of Borophosphosilicate Glass from Organic Reactants." Journal of The Electrochemical Society 134, no. 3 (March 1, 1987): 657–64. http://dx.doi.org/10.1149/1.2100527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bouteville, A., A. Royer, and J. C. Remy. "LPCVD of Titanium Disilicide: Selectivity of Growth." Journal of The Electrochemical Society 134, no. 8 (August 1, 1987): 2080–83. http://dx.doi.org/10.1149/1.2100825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Levy, R. A., M. L. Green, P. K. Gallagher, and Y. S. Ali. "Selective LPCVD Tungsten for Contact Barrier Applications." Journal of The Electrochemical Society 133, no. 9 (September 1, 1986): 1905–12. http://dx.doi.org/10.1149/1.2109047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

French, P. J. "Effect of deposition temperature on LPCVD polysilicon." Electronics Letters 22, no. 13 (1986): 716. http://dx.doi.org/10.1049/el:19860490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yokoyama, N., K. Hinode, and Y. Homma. "LPCVD TiN as Barrier Layer in VLSI." Journal of The Electrochemical Society 136, no. 3 (March 1, 1989): 882–83. http://dx.doi.org/10.1149/1.2096764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ogawa, K., Y. Mino, and T. Ishihara. "Performance of a New Vertical LPCVD Apparatus." Journal of The Electrochemical Society 136, no. 4 (April 1, 1989): 1103–8. http://dx.doi.org/10.1149/1.2096793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kosinova, M. L., N. I. Fainer, Yu M. Rumyantsev, A. N. Golubenko, and F. A. Kuznetsov. "LPCVD boron carbonitride films from triethylamine borane." Le Journal de Physique IV 09, PR8 (September 1999): Pr8–915—Pr8–921. http://dx.doi.org/10.1051/jp4:19998115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hitchman, M. L., and J. Zhao. "The LPCVD of rutile at low temperatures." Le Journal de Physique IV 09, PR8 (September 1999): Pr8–357—Pr8–364. http://dx.doi.org/10.1051/jp4:1999844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fossum, J. G., A. Ortiz-Conde, H. Shichijo, and S. K. Banerjee. "Anomalous leakage current in LPCVD PolySilicon MOSFET's." IEEE Transactions on Electron Devices 32, no. 9 (September 1985): 1878–84. http://dx.doi.org/10.1109/t-ed.1985.22212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rebillat, F., A. Guette, R. Nasiain, and C. Robin Brosse. "Highly ordered pyrolytic BN obtained by LPCVD." Journal of the European Ceramic Society 17, no. 12 (January 1997): 1403–14. http://dx.doi.org/10.1016/s0955-2219(96)00244-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ramgopal Rao, V., I. Eisele, R. M. Patrikar, D. K. Sharma, J. Vasi, and T. Grabolla. "High-field stressing of LPCVD gate oxides." IEEE Electron Device Letters 18, no. 3 (March 1997): 84–86. http://dx.doi.org/10.1109/55.556088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kawamoto, G. H., G. R. Magyar, and L. D. Yau. "Hot-electron trapping in thin LPCVD SiO2dielectrics." IEEE Transactions on Electron Devices 34, no. 12 (December 1987): 2450–55. http://dx.doi.org/10.1109/t-ed.1987.23334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Turtsevich, A. S., O. Yu Nalivaiko, and L. P. Anufriev. "LPCVD borophosphosilicate-glass films: Deposition and properties." Russian Microelectronics 36, no. 4 (July 2007): 251–60. http://dx.doi.org/10.1134/s1063739707040051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

YOKOYAMA, N., K. HINODE, and Y. HOMMA. "ChemInform Abstract: LPCVD Titanium Nitride for ULSIs." ChemInform 22, no. 9 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199109354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pan, P., J. Abernathey, and C. Schaefer. "Properties of thin LPCVD silicon oxynitride films." Journal of Electronic Materials 14, no. 5 (September 1985): 617–32. http://dx.doi.org/10.1007/bf02654028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Clavaguera-Mora, M. T., J. Rodriguez-Viejo, Z. El Felk, E. Hurtós, S. Berberich, J. Stoemenos, and N. Clavaguera. "Growth of SiC films obtained by LPCVD." Diamond and Related Materials 6, no. 10 (August 1997): 1306–10. http://dx.doi.org/10.1016/s0925-9635(97)00084-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wolf, H., R. Streiter, S. E. Schulz, and T. Gessner. "Growth rate modeling for selective tungsten LPCVD." Applied Surface Science 91, no. 1-4 (October 1995): 332–38. http://dx.doi.org/10.1016/0169-4332(95)00140-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fou, C. M. "Bulk analysis of LPCVD material by RBS." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 9, no. 3 (June 1985): 325–28. http://dx.doi.org/10.1016/0168-583x(85)90759-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kuiper, A. E. T., M. F. C. Willemsen, J. M. G. Bax, and F. H. P. H. Habraken. "Oxidation behaviour of LPCVD silicon oxynitride films." Applied Surface Science 33-34 (September 1988): 757–64. http://dx.doi.org/10.1016/0169-4332(88)90377-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Du, N., Y. T. Zhu, B. Y. Tong, P. K. John, S. K. Wong, and K. P. Chik. "Normal Hall coefficient of LPCVD amorphous silicon." Journal of Non-Crystalline Solids 114 (December 1989): 369–71. http://dx.doi.org/10.1016/0022-3093(89)90166-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Olson, James M. "Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments." Materials Science in Semiconductor Processing 5, no. 1 (February 2002): 51–60. http://dx.doi.org/10.1016/s1369-8001(02)00058-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography