To see the other types of publications on this topic, follow the link: Low Thermal Budget.

Journal articles on the topic 'Low Thermal Budget'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Low Thermal Budget.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sharangpani, R., K. C. Cherukuri, and R. Singh. "Low thermal budget processing of organic dielectrics." IEEE Transactions on Electron Devices 43, no. 7 (July 1996): 1168–70. http://dx.doi.org/10.1109/16.502430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pradeepkumar, Maurya Sandeep, Harsh Vardhan Singh, Sooraj Kumar, Joysurya Basu, and Md Imteyaz Ahmad. "Low thermal budget processing of CdS thin films." Materials Letters 280 (December 2020): 128560. http://dx.doi.org/10.1016/j.matlet.2020.128560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhat, N., A. W. Wang, and K. C. Saraswat. "Rapid thermal anneal of gate oxides for low thermal budget TFT's." IEEE Transactions on Electron Devices 46, no. 1 (1999): 63–69. http://dx.doi.org/10.1109/16.737442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Michael, Aron, and Chee Yee Kwok. "Evaporated Thick Polysilicon Film With Low Stress and Low Thermal Budget." Journal of Microelectromechanical Systems 22, no. 4 (August 2013): 825–27. http://dx.doi.org/10.1109/jmems.2013.2248129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mazzamuto, Fulvio, Sebastien Halty, Hideaki Tanimura, and Yoshihiro Mori. "Low Thermal Budget Ohmic Contact Formation by Laser Anneal." Materials Science Forum 858 (May 2016): 565–68. http://dx.doi.org/10.4028/www.scientific.net/msf.858.565.

Full text
Abstract:
In this work, we demonstrate the possibility to achieve an ohmic contact using a low thermal budget applicable to backside processing after wafer thinning. The process window for laser annealing as a function of the thinning process is investigated. By laser melt annealing, we demonstrate the possibility for different silicide phases from pure nickel deposition on thinned 4H-SiC, formation of uniform carbon nanoclusters at the metal/SiC interface and recovery of thinning-induced defects. This has been demonstrated as a function of different thinning process and surface conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

König, U., and J. Hersener. "Needs of Low Thermal Budget Processing in SiGe Technology." Solid State Phenomena 47-48 (July 1995): 17–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.47-48.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Il-Suk, Sung-Hun Yu, Hyun-Sang Seo, Jeong-Hun Kim, Jun-Mo Yang, Wook-Jung Hwang, and Chi Won Ahn. "Low Thermal Budget Crystallization of Amorphous Silicon by Nanoclusters." Electrochemical and Solid-State Letters 12, no. 9 (2009): H319. http://dx.doi.org/10.1149/1.3152594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abbadie, A., J. M. Hartmann, P. Holliger, M. N. Séméria, P. Besson, and P. Gentile. "Low thermal budget surface preparation of Si and SiGe." Applied Surface Science 225, no. 1-4 (March 2004): 256–66. http://dx.doi.org/10.1016/j.apsusc.2003.10.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simon, Daniel K., Thomas Henke, Paul M. Jordan, Franz P. G. Fengler, Thomas Mikolajick, Johann W. Bartha, and Ingo Dirnstorfer. "Low-thermal budget flash light annealing for Al2O3surface passivation." physica status solidi (RRL) - Rapid Research Letters 9, no. 11 (October 16, 2015): 631–35. http://dx.doi.org/10.1002/pssr.201510306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Noh, Joo Hyon, Pooran C. Joshi, Teja Kuruganti, and Philip D. Rack. "Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors." IEEE Journal of the Electron Devices Society 3, no. 3 (May 2015): 297–301. http://dx.doi.org/10.1109/jeds.2014.2376411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Testard, O. A. "Thermal contacts through mechanical moving parts in low thermal budget optical cryogenic assemblies." Cryogenics 27, no. 1 (January 1987): 20–22. http://dx.doi.org/10.1016/0011-2275(87)90100-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Soubane, Driss, and Nathaniel J. Quitoriano. "Photoluminescence from low thermal budget silicon nano-crystals in silica." Nanotechnology 26, no. 29 (July 2, 2015): 295201. http://dx.doi.org/10.1088/0957-4484/26/29/295201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Gang, and S. J. Fonash. "Low Thermal Budget Poly-Si Thin Film Transistors on Glass." Japanese Journal of Applied Physics 30, Part 2, No. 2B (February 15, 1991): L269—L271. http://dx.doi.org/10.1143/jjap.30.l269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fair, R. B. "Low-thermal-budget process modeling with the PREDICT computer program." IEEE Transactions on Electron Devices 35, no. 3 (March 1988): 285–93. http://dx.doi.org/10.1109/16.2452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rajendran, Bipin, Rohit S. Shenoy, Daniel J. Witte, Nehal S. Chokshi, Robert L. DeLeon, Gary S. Tompa, and R. Fabian W. Pease. "Low Thermal Budget Processing for Sequential 3-D IC Fabrication." IEEE Transactions on Electron Devices 54, no. 4 (April 2007): 707–14. http://dx.doi.org/10.1109/ted.2007.891300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hsiao-Yi Lin, Chun-Yen Chang, Tan Fu Lei, Feng-Ming Liu, Wen-Luh Yang, Juing-Yi Cheng, Hua-Chou Tseng, and Liang-Po Chen. "Low-temperature and low thermal budget fabrication of polycrystalline silicon thin-film transistors." IEEE Electron Device Letters 17, no. 11 (November 1996): 503–5. http://dx.doi.org/10.1109/55.541762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jurichich, Steve, Tsu-Jae King, Krishna Saraswat, and John Mehlhaff. "Low Thermal Budget Polycrystalline Silicon-Germanium Thin-Film Transistors Fabricated by Rapid Thermal Annealing." Japanese Journal of Applied Physics 33, Part 2, No. 8B (August 15, 1994): L1139—L1141. http://dx.doi.org/10.1143/jjap.33.l1139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Serrazina, Ricardo, Alexander Tkach, Luis Pereira, Ana M. O. R. Senos, and Paula M. Vilarinho. "Flash Sintered Potassium Sodium Niobate: High-Performance Piezoelectric Ceramics at Low Thermal Budget Processing." Materials 15, no. 19 (September 23, 2022): 6603. http://dx.doi.org/10.3390/ma15196603.

Full text
Abstract:
Alternative sintering technologies promise to overcome issues associated with conventional ceramic sintering such as high thermal budgets and CO2 footprint. The sintering process becomes even more relevant for alkali-based piezoelectric ceramics such as K0.5Na0.5NbO3 (KNN) typically fired above 1100 °C for several hours that induces secondary phase formation and, thereby, degrades their electrical characteristics. Here, an ability of KNN ceramics to be of high performance is successfully demonstrated, using an electric field- and current-assisted Flash sintering technique at 900 °C only. Reported for the first time, Flash sintered KNN ceramics have room-temperature remnant polarization Pr = 21 μC/cm2 and longitudinal piezoelectric coefficient d33 = 117 pC/N, slightly superior to that of conventional ones due to the reduced content of secondary phases. High-performance KNN ceramics Flash sintered at a low-thermal budget have implications for the development of innovative low carbon technologies, electroceramics stakeholders, and piezoelectric energy harvesters.
APA, Harvard, Vancouver, ISO, and other styles
19

Kim, Hyo Jeong, Yonghwan An, Yong Chan Jung, Jaidah Mohan, Jeong Gyu Yoo, Young In Kim, Heber Hernandez-Arriaga, Harrison Sejoon Kim, Jiyoung Kim, and Si Joon Kim. "Low‐Thermal‐Budget Fluorite‐Structure Ferroelectrics for Future Electronic Device Applications." physica status solidi (RRL) – Rapid Research Letters 15, no. 5 (February 24, 2021): 2100028. http://dx.doi.org/10.1002/pssr.202100028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Hyo Jeong, Yonghwan An, Yong Chan Jung, Jaidah Mohan, Jeong Gyu Yoo, Young In Kim, Heber Hernandez-Arriaga, Harrison Sejoon Kim, Jiyoung Kim, and Si Joon Kim. "Low‐Thermal‐Budget Fluorite‐Structure Ferroelectrics for Future Electronic Device Applications." physica status solidi (RRL) – Rapid Research Letters 15, no. 5 (May 2021): 2170020. http://dx.doi.org/10.1002/pssr.202170020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Celik, S. Muhsin, and Mehmet C. Öztürk. "Low Thermal Budget In Situ Surface Cleaning for Selective Silicon Epitaxy." Journal of The Electrochemical Society 145, no. 10 (October 1, 1998): 3602–9. http://dx.doi.org/10.1149/1.1838849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Osmond, J., G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel. "Ultralow dark current Ge/Si(100) photodiodes with low thermal budget." Applied Physics Letters 94, no. 20 (May 18, 2009): 201106. http://dx.doi.org/10.1063/1.3125252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

P, Ashok, Yogesh Singh Chauhan, and Amit Verma. "Vanadium dioxide thin films synthesized using low thermal budget atmospheric oxidation." Thin Solid Films 706 (July 2020): 138003. http://dx.doi.org/10.1016/j.tsf.2020.138003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Osburn, C. M. "Formation of silicided, ultra-shallow junctions using low thermal budget processing." Journal of Electronic Materials 19, no. 1 (January 1990): 67–88. http://dx.doi.org/10.1007/bf02655553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Inoue, N., T. Nakura, and Y. Hayashi. "Low thermal-budget process of sputtered-PZT capacitor over multilevel metallization." IEEE Transactions on Electron Devices 50, no. 10 (October 2003): 2081–87. http://dx.doi.org/10.1109/ted.2003.816548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lackner, Georg, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont. "On the energy budget of a low-Arctic snowpack." Cryosphere 16, no. 1 (January 13, 2022): 127–42. http://dx.doi.org/10.5194/tc-16-127-2022.

Full text
Abstract:
Abstract. Arctic landscapes are covered in snow for at least 6 months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low-Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the upward heat flux in the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, it showed some deficiencies when simulating turbulent heat fluxes at an hourly timescale.
APA, Harvard, Vancouver, ISO, and other styles
27

Huet, Karim, Toshiyuki Tabata, Joris Aubin, Fabien Rozé, Louis Thuries, Sebastien Halty, Benoit Curvers, Fulvio Mazzamuto, J. Liu, and Yoshihiro Mori. "(Invited) Laser Thermal Annealing for Low Thermal Budget Applications: From Contact Formation to Material Modification." ECS Transactions 89, no. 3 (April 23, 2019): 137–53. http://dx.doi.org/10.1149/08903.0137ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chang, Wen Hsin, Hsien-Wen Wan, Yi-Ting Cheng, Yen-Hsun G. Lin, Toshifumi Irisawa, Hiroyuki Ishii, Jueinai Kwo, Minghwei Hong, and Tatsuro Maeda. "Low thermal budget epitaxial lift off (ELO) for Ge (111)-on-insulator structure." Japanese Journal of Applied Physics 61, SC (February 11, 2022): SC1024. http://dx.doi.org/10.35848/1347-4065/ac3fca.

Full text
Abstract:
Abstract Germanium-on-insulator (GeOI) structures with a surface orientation of (111) have been successfully fabricated by using low thermal budget epitaxial-lift-off (ELO) technology via direct bonding and selective etching. The material characteristics and transport properties of the Ge(111)OI structure have been systematically investigated through secondary-ion mass spectrometry, Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscope, and Hall measurement. The transferred Ge (111) layer remained almost intact from the as-grown epitaxial layers, indicating the benefits of ELO technology. The low thermal budget ELO technology demonstrated in this work is promising to integrate Ge channels with different surface orientations on Si (100) substrates for future monolithic 3D applications.
APA, Harvard, Vancouver, ISO, and other styles
29

Cha, Jun‐Hwe, Dong‐Ha Kim, Cheolmin Park, Seon‐Jin Choi, Ji‐Soo Jang, Sang Yoon Yang, Il‐Doo Kim, and Sung‐Yool Choi. "Low‐Thermal‐Budget Doping: Low‐Thermal‐Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron‐Doped Reduced Graphene Oxide (Adv. Sci. 7/2020)." Advanced Science 7, no. 7 (April 2020): 2070039. http://dx.doi.org/10.1002/advs.202070039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lucovsky, Gerald, David R. Lee, Sunil V. Hattangady, Hiro Niimi, Ze Jing, Chris Parker, and John R. Hauser. "Monolayer Nitrogen-Atom Distributions in Ultrathin Gate Dielectrics by Low-Temperature Low-Thermal-Budget Processing." Japanese Journal of Applied Physics 34, Part 1, No. 12B (December 30, 1995): 6827–37. http://dx.doi.org/10.1143/jjap.34.6827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Saha, S. K., R. S. Howell, and M. K. Hatalis. "Silicidation reactions with Co–Ni bilayers for low thermal budget microelectronic applications." Thin Solid Films 347, no. 1-2 (June 1999): 278–83. http://dx.doi.org/10.1016/s0040-6090(99)00013-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lim, D. G., B. S. Jang, S. I. Moon, C. Y. Won, and J. Yi. "Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process." Solid-State Electronics 45, no. 7 (July 2001): 1159–63. http://dx.doi.org/10.1016/s0038-1101(01)00042-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rappich, J. "Anodic oxidation as a low thermal budget process for passivation of SiGe." Solid-State Electronics 45, no. 8 (August 2001): 1465–70. http://dx.doi.org/10.1016/s0038-1101(01)00056-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chou, Tzu-Ting, Rui-Wen Song, Hao Chen, and Jenq-Gong Duh. "Low thermal budget bonding for 3D-package by collapse-free hybrid solder." Materials Chemistry and Physics 238 (December 2019): 121887. http://dx.doi.org/10.1016/j.matchemphys.2019.121887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Brabant, Paul, Jianqing Wen, Joe Italiano, Trevan Landin, Nyles Cody, and Lee Haen. "Achieving a SiGe HBT epitaxial emitter with novel low thermal budget technique." Applied Surface Science 224, no. 1-4 (March 2004): 347–49. http://dx.doi.org/10.1016/j.apsusc.2003.08.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bietti, S., C. Somaschini, S. Sanguinetti, N. Koguchi, G. Isella, D. Chrastina, and A. Fedorov. "Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates." Journal of Physics: Conference Series 245 (September 1, 2010): 012078. http://dx.doi.org/10.1088/1742-6596/245/1/012078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hieronymus, Magnus, and Jeffrey R. Carpenter. "Energy and Variance Budgets of a Diffusive Staircase with Implications for Heat Flux Scaling." Journal of Physical Oceanography 46, no. 8 (August 2016): 2553–69. http://dx.doi.org/10.1175/jpo-d-15-0155.1.

Full text
Abstract:
AbstractThe steady-state energy and thermal variance budgets form the basis for most current methods for evaluating turbulent fluxes of buoyancy, heat, and salinity. This study derives these budgets for a double-diffusive staircase and quantifies them using direct numerical simulations; 10 runs with different Rayleigh numbers are considered. The energy budget is found to be well approximated by a simple three-term balance, while the thermal variance budget consists of only two terms. The two budgets are also combined to give an expression for the ratio of the heat and salt fluxes. The heat flux scaling is also studied and found to agree well with earlier estimates based on laboratory experiments and numerical simulations at high Rayleigh numbers. At low Rayleigh numbers, however, the authors find large deviations from earlier scaling laws. Last, the scaling theory of Grossman and Lohse, which was developed for Rayleigh–Bénard convection and is based on the partitioning of the kinetic energy and tracer variance dissipation, is adapted to the diffusive regime of double-diffusive convection. The predicted heat flux scalings are compared to the results from the numerical simulations and earlier estimates.
APA, Harvard, Vancouver, ISO, and other styles
38

Prowse, T. D., and P. Marsh. "Thermal budget of river ice covers during breakup." Canadian Journal of Civil Engineering 16, no. 1 (February 1, 1989): 62–71. http://dx.doi.org/10.1139/l89-008.

Full text
Abstract:
The magnitude and relative importance of atmosheric (air–ice) and hydrothermal (water–ice) heat fluxes to intact and fragmented river ice covers are studied for the case of a thermal breakup. Based on field measurements obtained from the Liard River, the atmospheric sources are shown to be dominant during the period of intact ice cover. Radiation was the primary heat source, but its effect was reduced by a granulation of the decaying columnar ice which increased the cover albedo to that comparable for melting snow. The hydrothermal heat input, even with frazil ice entrained within the flow, was comparable to that from atmospheric sources under low melt conditions. The hydrothermal heat flux dramatically increased with the arrival of the breakup front because of a rapid rise in water temperature and an increase in subsurface ice roughness. Higher surface roughness and lower albedo of the fragmented ice also increased the atmospheric heat fluxes, but these were small relative to the hydrothermal heat input near the leading edge of open water. Key words: floating ice, ice breakup, ice jams, ice melt.
APA, Harvard, Vancouver, ISO, and other styles
39

Ding, Dong, Yunya Zhang, Wei Wu, Dongchang Chen, Meilin Liu, and Ting He. "A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane." Energy & Environmental Science 11, no. 7 (2018): 1710–16. http://dx.doi.org/10.1039/c8ee00645h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Qin, Shu. "High quality low thermal budget low cost SiO2 film fabricated by O2 plasma immersion ion implantation." Thin Solid Films 756 (August 2022): 139385. http://dx.doi.org/10.1016/j.tsf.2022.139385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jao, Meng-Huan, Chien-Chen Cheng, Chun-Fu Lu, Kai-Chi Hsiao, and Wei-Fang Su. "Low temperature and rapid formation of high quality metal oxide thin film via a hydroxide-assisted energy conservation strategy." Journal of Materials Chemistry C 6, no. 37 (2018): 9941–49. http://dx.doi.org/10.1039/c8tc03544j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Glück, M., J. Hersener, H. G. Umbach, J. Rappich, and J. Stein. "Implementation of Low Thermal Budget Techniques to Si and SiGe MOSFET Device Processing." Solid State Phenomena 57-58 (July 1997): 413–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.57-58.413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Y., L. M. Kyaw, M. K. Bera, S. P. Singh, Y. J. Ngoo, G. Q. Lo, and E. F. Chor. "Low Thermal Budget Au-Free Hf-Based Ohmic Contacts on InAlN/GaN Heterostructures." ECS Transactions 61, no. 4 (March 20, 2014): 319–27. http://dx.doi.org/10.1149/06104.0319ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Anderson, Evan M., DeAnna M. Campbell, Leon N. Maurer, Andrew D. Baczewski, Michael T. Marshall, Tzu-Ming Lu, Ping Lu, et al. "Low thermal budget high-k/metal surface gate for buried donor-based devices." Journal of Physics: Materials 3, no. 3 (June 18, 2020): 035002. http://dx.doi.org/10.1088/2515-7639/ab953b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, Wen-Hsien, Jia-Min Shieh, Fu-Ming Pan, Chih-Chao Yang, Chang-Hong Shen, Hsing-Hsiang Wang, Tung-Ying Hsieh, Ssu-Yu Wu, and Meng-Chyi Wu. "Charge-trap non-volatile memories fabricated by laser-enabled low-thermal budget processes." Applied Physics Letters 107, no. 18 (November 2, 2015): 183506. http://dx.doi.org/10.1063/1.4935224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Alian, A., G. Brammertz, N. Waldron, C. Merckling, G. Hellings, H. C. Lin, W. E. Wang, et al. "Silicon and selenium implantation and activation in In0.53Ga0.47As under low thermal budget conditions." Microelectronic Engineering 88, no. 2 (February 2011): 155–58. http://dx.doi.org/10.1016/j.mee.2010.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sareen, Alok, Ann-Chatrin Lindgren, Per Lundgren, and Stefan Bengtsson. "Electrical characterization of low thermal budget gate oxides on Si/Si0.8Ge0.2/Si substrates." Solid-State Electronics 46, no. 7 (July 2002): 991–95. http://dx.doi.org/10.1016/s0038-1101(02)00032-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rafie Borujeny, Elham, Oles Sendetskyi, Michael D. Fleischauer, and Kenneth C. Cadien. "Low Thermal Budget Heteroepitaxial Gallium Oxide Thin Films Enabled by Atomic Layer Deposition." ACS Applied Materials & Interfaces 12, no. 39 (August 31, 2020): 44225–37. http://dx.doi.org/10.1021/acsami.0c08477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Labrot, M., F. Cheynis, D. Barge, P. Müller, and M. Juhel. "Low thermal budget for Si and SiGe surface preparation for FD-SOI technology." Applied Surface Science 371 (May 2016): 436–46. http://dx.doi.org/10.1016/j.apsusc.2016.02.228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jaeger, Christian, Takuya Matsui, Masayoshi Takeuchi, Minoru Karasawa, Michio Kondo, and Martin Stutzmann. "Thin Film Solar Cells Prepared on Low Thermal Budget Polycrystalline Silicon Seed Layers." Japanese Journal of Applied Physics 49, no. 11 (November 22, 2010): 112301. http://dx.doi.org/10.1143/jjap.49.112301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography