To see the other types of publications on this topic, follow the link: Low temperature photoluminescence.

Journal articles on the topic 'Low temperature photoluminescence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Low temperature photoluminescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lacroix, Y., C. A. Tran, S. P. Watkins, and M. L. W. Thewalt. "Low‐temperature photoluminescence of epitaxial InAs." Journal of Applied Physics 80, no. 11 (December 1996): 6416–24. http://dx.doi.org/10.1063/1.363660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kini, R. N., A. Mascarenhas, R. France, and A. J. Ptak. "Low temperature photoluminescence from dilute bismides." Journal of Applied Physics 104, no. 11 (December 2008): 113534. http://dx.doi.org/10.1063/1.3041479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Misiewicz, J. "The low temperature photoluminescence in Zn3P2." Physica Status Solidi (a) 107, no. 1 (May 16, 1988): K65—K68. http://dx.doi.org/10.1002/pssa.2211070161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Soo-Yong. "A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 24, no. 4 (April 30, 2010): 10–16. http://dx.doi.org/10.5207/jieie.2010.24.4.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kasai, Jun‐ichi, and Yoshifumi Katayama. "Low‐temperature micro‐photoluminescence using confocal microscopy." Review of Scientific Instruments 66, no. 7 (July 1995): 3738–43. http://dx.doi.org/10.1063/1.1145431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pickin, William. "Low-temperature photoluminescence spectrum of amorphous semiconductors." Physical Review B 40, no. 17 (December 15, 1989): 12030–33. http://dx.doi.org/10.1103/physrevb.40.12030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kovalev, D., J. Diener, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al L. Efros, and M. Rosen. "Low-temperature photoluminescence upconversion in porous Si." Physical Review B 61, no. 23 (June 15, 2000): 15841–47. http://dx.doi.org/10.1103/physrevb.61.15841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Churmanov, V. N., N. B. Gruzdev, V. I. Sokolov, V. A. Pustovarov, V. Yu Ivanov, and N. A. Mironova-Ulmane. "Low-temperature photoluminescence in NixMg1−xO nanocrystals." Low Temperature Physics 41, no. 3 (March 2015): 233–35. http://dx.doi.org/10.1063/1.4915911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feng, W., F. Chen, Q. Huang, and J. M. Zhou. "Photoluminescence of low-temperature multiple quantum wells." Journal of Crystal Growth 175-176 (May 1997): 1173–77. http://dx.doi.org/10.1016/s0022-0248(96)01041-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lan, Y. C., X. L. Chen, Y. G. Cao, Y. P. Xu, L. D. Xun, T. Xu, and J. K. Liang. "Low-temperature synthesis and photoluminescence of AlN." Journal of Crystal Growth 207, no. 3 (December 1999): 247–50. http://dx.doi.org/10.1016/s0022-0248(99)00448-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bezrodna, T., V. Melnyk, V. Vorobjev, and G. Puchkovska. "Low-temperature photoluminescence of 5CB liquid crystal." Journal of Luminescence 130, no. 7 (July 2010): 1134–41. http://dx.doi.org/10.1016/j.jlumin.2010.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

GASANLY, N. M. "Low-temperature photoluminescence in CuIn5S8 single crystals." Pramana 86, no. 6 (February 13, 2016): 1383–90. http://dx.doi.org/10.1007/s12043-015-1181-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pal, S., A. Sarkar, P. Kumar, D. Kanjilal, T. Rakshit, S. K. Ray, and D. Jana. "Low temperature photoluminescence from disordered granular ZnO." Journal of Luminescence 169 (January 2016): 326–33. http://dx.doi.org/10.1016/j.jlumin.2015.09.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cho, Hak Dong, Im Taek Yoon, Kwun Bum Chung, Deuk Young Kim, Tae Won Kang, and Sh U. Yuldashev. "Low-temperature photoluminescence of WO 3 nanoparticles." Journal of Luminescence 195 (March 2018): 344–47. http://dx.doi.org/10.1016/j.jlumin.2017.11.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bodnar’, I. V., and M. V. Yakushev. "Low-temperature photoluminescence in AgGaSe2 single crystals." Technical Physics 49, no. 3 (March 2004): 335–37. http://dx.doi.org/10.1134/1.1688420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Posavec, T., S. Nepal, and S. V. Dordevic. "Low Temperature Photoluminescence in Some Common Polymers." Materials Performance and Characterization 7, no. 1 (May 2, 2018): 20170138. http://dx.doi.org/10.1520/mpc20170138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Andreev, B. A., N. A. Sobolev, Yu A. Nikolaev, D. I. Kuritsin, M. I. Makovijchuk, and E. O. Parshin. "Low-temperature photoluminescence in holmium-doped silicon." Semiconductors 33, no. 4 (April 1999): 407–9. http://dx.doi.org/10.1134/1.1187703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tronc, P., B. Reid, H. Mani, R. MacIejko, A. N. Titkov, J. L. Lazzari, and C. Alibert. "Low Temperature Photoluminescence Spectra of Ga0.77In0.23As0.19SB0.81 Compounds." physica status solidi (b) 180, no. 2 (December 1, 1993): K87—K91. http://dx.doi.org/10.1002/pssb.2221800240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Yichun, and Yanhong Tong. "Growth and Optical Properties of ZnO Low-Dimensional Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 3 (March 1, 2008): 1101–9. http://dx.doi.org/10.1166/jnn.2008.18158.

Full text
Abstract:
Recent studies on the growth of ZnO nanostructures and their optical properties were reviewed. Using different methods, a variety of ZnO nanostructures, including quantum dots nanotowers, nanotubes, nanorods, nanowires, and nanosheets, displaying zero, one, and two dimensions, have been synthesized. The growth of ZnO low-dimensional nanostructures has been demonstrated. Their optical properties have been studied by means of room-temperature photoluminescence spectra, low-temperature photoluminescence spectra, temperature-dependent photoluminescence spectra, and pressure-dependent photoluminescence spectra. The optical properties can be adjusted by the surface features of ZnO low-dimensional nanostructures. The strong exciton emission has been observed in some nanostructures, showing promising potential in nanodevice applications.
APA, Harvard, Vancouver, ISO, and other styles
20

Sagara, Yoshimitsu, Tatsuya Muramatsu, and Nobuyuki Tamaoki. "A 1,6-Diphenylpyrene-Based, Photoluminescent Cyclophane Showing a Nematic Liquid-Crystalline Phase at Room Temperature." Crystals 9, no. 2 (February 11, 2019): 92. http://dx.doi.org/10.3390/cryst9020092.

Full text
Abstract:
Photoluminescent nematic liquid crystals have been an attractive research target for decades, because of their potential applications in optoelectrical devices. Integration of luminescent motifs into cyclic structures is a promising approach to induce low-ordered liquid-crystalline phases, even though relatively large and rigid luminophores are used as emitters. Here, we demonstrate a 1,6-diphenylpyrene-based, unsymmetric cyclophane showing a stable nematic phase at room temperature and exhibiting strong photoluminescence from the condensed state. The observed sky-blue photoluminescence was dominated by the emission species ascribed to assembled luminophores rather than monomers.
APA, Harvard, Vancouver, ISO, and other styles
21

Kitada, Nobuo, and Takayuki Ishida. "Polymeric one- and two-dimensional copper(i) iodide complexes showing photoluminescence tunable by azaaromatic ligands." CrystEngComm 16, no. 34 (2014): 8035–40. http://dx.doi.org/10.1039/c4ce01231c.

Full text
Abstract:
Photoluminescent properties of four low-dimensional [(CuI)xL]n complexes were investigated in the solid state at ambient temperature. A photoluminescence quantum yield of 73% was recorded for [(CuI)2(46dmpm)]n.
APA, Harvard, Vancouver, ISO, and other styles
22

Tian, Peng, Chong Qing Huang, Wen Hua Luo, and Jing Liu. "MOCVD Growth and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots." Advanced Materials Research 571 (September 2012): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.571.265.

Full text
Abstract:
InAs/GaAs quantum dots structures are grown by meta-organic chemical vapor deposition. The effects of growth temperatures on the structural and optical properties of quantum dots are investigated by the atomic force microscopy and photoluminescence. An areal density of 9.3×109cm2 and a strongly enhanced photoluminescence intensity are obtained at the temperature of 505°C, furthermore, the low and high growth temperature tend to form coalescent islands and decrease the intensity of photoluminescence spectra.
APA, Harvard, Vancouver, ISO, and other styles
23

Hwang, Seongmi, Youngmin Choi, and Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.026.

Full text
Abstract:
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 °C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.
APA, Harvard, Vancouver, ISO, and other styles
24

Hwang, Seongmi, Youngmin Choi, and Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.18071.

Full text
Abstract:
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 °C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.
APA, Harvard, Vancouver, ISO, and other styles
25

Hatayama, Tomoaki, Anne Henry, Hiroshi Yano, and Takashi Fuyuki. "Low-temperature photoluminescence of 8H-SiC homoepitaxial layer." Japanese Journal of Applied Physics 55, no. 2 (January 20, 2016): 020303. http://dx.doi.org/10.7567/jjap.55.020303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Park, Jin Won, Dong Jae Lee, Dong Hwan Kim, and Yunsang Lee. "Low-temperature Photoluminescence for Polycrystalline SrZrO3 and SrHfO3." Journal of the Korean Physical Society 58, no. 2 (February 15, 2011): 316–20. http://dx.doi.org/10.3938/jkps.58.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

James, R. B., X. J. Bao, T. E. Schlesinger, J. M. Markakis, A. Y. Cheng, and C. Ortale. "Low‐temperature photoluminescence studies of mercuric‐iodide photodetectors." Journal of Applied Physics 66, no. 6 (September 15, 1989): 2578–84. http://dx.doi.org/10.1063/1.344222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lee, Jaesun, and N. C. Giles. "Low‐temperature photoluminescence from bulk CdTe and Cd0.967Zn0.033Te." Journal of Applied Physics 78, no. 2 (July 15, 1995): 1191–95. http://dx.doi.org/10.1063/1.360356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Abay, B., H. Efeoglu, Y. K. Yogurtçu, and M. Alieva. "Low-temperature visible photoluminescence spectra of Tl2GaInSe4layered crystals." Semiconductor Science and Technology 16, no. 9 (August 10, 2001): 745–49. http://dx.doi.org/10.1088/0268-1242/16/9/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Jia-Yao, Lin Shang, Shu-Fang Ma, Bin Han, Guo-Dong Wei, Qing-Ming Liu, Xiao-Dong Hao, Heng-Sheng Shan, and Bing-She Xu. "Low temperature photoluminescence study of GaAs defect states." Chinese Physics B 29, no. 1 (January 2020): 010703. http://dx.doi.org/10.1088/1674-1056/ab5fb8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ZHU, DELIANG, QIANWANG CHEN, and YUHENG ZHANG. "STABLE PHOTOLUMINESCENCE IN LOW-TEMPERATURE ANNEALED POROUS SILICON." Modern Physics Letters B 15, no. 24 (October 20, 2001): 1077–85. http://dx.doi.org/10.1142/s0217984901002920.

Full text
Abstract:
The low-temperature annealing of porous silicon (PS) has been studied in ambient air and vacuum. After air-annealed samples were again stored in air for a period of time, their luminescence exhibited improved stability in comparison to fresh samples. But their luminescence intensity is much weaker than that of fresh samples, and their peak position moves to shorter wavelengths. A stoichiometric oxide SiO2 can easily be formed on PS surfaces if the annealing is performed in vacuum. The SiO2 layer prevents nc-Si from further oxidation and guarantees the luminescence intensity and that peak position remains unchanged with air storage.
APA, Harvard, Vancouver, ISO, and other styles
32

Gasanly, N. M., and A. Aydinli. "Low-temperature photoluminescence spectra of InS single crystals." Solid State Communications 101, no. 11 (March 1997): 797–99. http://dx.doi.org/10.1016/s0038-1098(96)00704-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Seong‐Il, Moo‐Sung Kim, Yong Kim, Kyung Sook Eom, Suk‐Ki Min, and Choochon Lee. "Low temperature photoluminescence characteristics of carbon doped GaAs." Journal of Applied Physics 73, no. 9 (May 1993): 4703–5. http://dx.doi.org/10.1063/1.352740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aydınlı, A., N. M. Gasanly, and K. Gökşen. "Low-temperature photoluminescence study of GaS0.5Se0.5 layered crystals." Materials Research Bulletin 36, no. 10 (July 2001): 1823–32. http://dx.doi.org/10.1016/s0025-5408(01)00635-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shinde, Aparna, Richa Gahlaut, and Shailaja Mahamuni. "Low-Temperature Photoluminescence Studies of CsPbBr3 Quantum Dots." Journal of Physical Chemistry C 121, no. 27 (June 29, 2017): 14872–78. http://dx.doi.org/10.1021/acs.jpcc.7b02982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hudait, M. K., P. Modak, K. S. R. K. Rao, and S. B. Krupanidhi. "Low temperature photoluminescence properties of Zn-doped GaAs." Materials Science and Engineering: B 57, no. 1 (December 1998): 62–70. http://dx.doi.org/10.1016/s0921-5107(98)00259-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gasanly, N. M., A. Aydinli, A. Bek, and I. Yilmaz. "Low-temperature photoluminescence spectra of layered semiconductor TlGaS2." Solid State Communications 105, no. 1 (January 1998): 21–24. http://dx.doi.org/10.1016/s0038-1098(97)10027-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Nikitin, T., S. Kopyl, V. Ya Shur, Y. V. Kopelevich, and A. L. Kholkin. "Low-temperature photoluminescence in self-assembled diphenylalanine microtubes." Physics Letters A 380, no. 18-19 (April 2016): 1658–62. http://dx.doi.org/10.1016/j.physleta.2016.02.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kalem, S., T. Curtis, W. B. de Boer, and G. E. Stillman. "Low-temperature photoluminescence in SiGe single quantum wells." Applied Physics A: Materials Science & Processing 66, no. 1 (January 1, 1998): 23–28. http://dx.doi.org/10.1007/s003390050632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gasanly, N. M. "Low-temperature photoluminescence in layered structured TlGa0.5In0.5Se2 crystals." Journal of Alloys and Compounds 547 (January 2013): 33–36. http://dx.doi.org/10.1016/j.jallcom.2012.08.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tu, Ya Fang, and Qiu Ming Fu. "Low Temperature Synthesis and Characterization of Flower-Like ZnO Nanostructures." Advanced Materials Research 664 (February 2013): 605–8. http://dx.doi.org/10.4028/www.scientific.net/amr.664.605.

Full text
Abstract:
Flower-like ZnO nanostructures have been synthesized via solution process using zinc nitrate and sodium hydroxide at very low temperature of 70 °C in 1h. The structure, morphology and optical properties of the product were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. The flower-like ZnO nanostructures were composed of uniform nanorods, they were well crystallized with a hexagonal wurtzite structure, and showed a strong ultraviolet emission at 385 nm and a weak and broad yellow emission in the photoluminescence spectrum.
APA, Harvard, Vancouver, ISO, and other styles
42

Byrne, Daragh, Aidan Cowley, Nick Bennett, and Enda McGlynn. "The luminescent properties of CuAlO2." J. Mater. Chem. C 2, no. 37 (2014): 7859–68. http://dx.doi.org/10.1039/c4tc01311e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Morales, A. Escobedo, R. Aceves, U. Pal, and J. Z. Zhang. "Low Temperature Photoluminescence Characteristics of Chemically Synthesized Indium Doped Zinc Oxide Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 12 (December 1, 2008): 6538–44. http://dx.doi.org/10.1166/jnn.2008.18422.

Full text
Abstract:
Photoluminescence (PL) emission and excitation (EPL) spectra of un-doped and indium (1%) doped 1D zinc oxide nanostructures are studied at different temperatures. The nanostructures reveal a blue emission band attributed to localized donor states. Indium doping enhances the blue emission. While at low temperatures (<50 K) PL spectra are dominated by the emission attributed to the recombination of excitons bound to neutral donors (D0,X), at higher temperatures (>100 K), defect related emissions in the visible range dominate over the excitonic emission. Temperature dependence measurements on the doped sample reveal that (D0,X) emission energies obey the Varshni's formula with fitting constants α = 8.4±0.3 × 10−4 eV/K and β = 650±40 K. The (D0,X) emission intensity decays exponentially with temperature.
APA, Harvard, Vancouver, ISO, and other styles
44

Xia, Yijie, Shuaishuai Du, Pengju Huang, Luchao Wu, Siyu Yan, Weizhi Wang, and Gaoyu Zhong. "Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites." Nanomaterials 11, no. 12 (December 6, 2021): 3310. http://dx.doi.org/10.3390/nano11123310.

Full text
Abstract:
The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78–500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78–500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material’s high photoluminescence efficiency and low electroluminescence efficiency.
APA, Harvard, Vancouver, ISO, and other styles
45

Dissanayake, A., J. Y. Lin, H. X. Jiang, Z. J. Yu, and J. H. Edgar. "Low‐temperature epitaxial growth and photoluminescence characterization of GaN." Applied Physics Letters 65, no. 18 (October 31, 1994): 2317–19. http://dx.doi.org/10.1063/1.112729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sokolov, V. I., V. A. Pustovarov, N. B. Gruzdev, P. S. Sokolov, and A. N. Baranov. "Low-temperature photoluminescence of CoO excited by synchrotron radiation." Optics and Spectroscopy 116, no. 5 (May 2014): 790–92. http://dx.doi.org/10.1134/s0030400x14050233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhai, Y. J., X. L. Chen, J. H. Li, X. Y. Chu, and Y. Zhang. "Low-Temperature Photoluminescence Properties of the Monolayer MoS2 Nanomaterals." Integrated Ferroelectrics 212, no. 1 (November 11, 2020): 147–55. http://dx.doi.org/10.1080/10584587.2020.1819043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Valakh, M. Ya, N. V. Vuychik, V. V. Strelchuk, S. V. Sorokin, T. V. Shubina, S. V. Ivanov, and P. S. Kop’ev. "Low-temperature anti-Stokes photoluminescence in CdSe/ZnSe nanostructures." Semiconductors 37, no. 6 (June 2003): 699–704. http://dx.doi.org/10.1134/1.1582538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Zengxing, Jianxiong Wang, Huajun Yuan, Yan Gao, Dongfang Liu, Li Song, Yanjuan Xiang, et al. "Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons." Journal of Physical Chemistry B 109, no. 39 (October 2005): 18352–55. http://dx.doi.org/10.1021/jp052199d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

De Vittorio, M., A. Melcarne, R. Rinaldi, and R. Cingolani. "Low temperature tool for photoluminescence mapping with submicron resolution." Review of Scientific Instruments 72, no. 6 (June 2001): 2610–12. http://dx.doi.org/10.1063/1.1369631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography