Academic literature on the topic 'Low temperature photoluminescence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low temperature photoluminescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Low temperature photoluminescence"

1

Lacroix, Y., C. A. Tran, S. P. Watkins, and M. L. W. Thewalt. "Low‐temperature photoluminescence of epitaxial InAs." Journal of Applied Physics 80, no. 11 (December 1996): 6416–24. http://dx.doi.org/10.1063/1.363660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kini, R. N., A. Mascarenhas, R. France, and A. J. Ptak. "Low temperature photoluminescence from dilute bismides." Journal of Applied Physics 104, no. 11 (December 2008): 113534. http://dx.doi.org/10.1063/1.3041479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Misiewicz, J. "The low temperature photoluminescence in Zn3P2." Physica Status Solidi (a) 107, no. 1 (May 16, 1988): K65—K68. http://dx.doi.org/10.1002/pssa.2211070161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Soo-Yong. "A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 24, no. 4 (April 30, 2010): 10–16. http://dx.doi.org/10.5207/jieie.2010.24.4.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kasai, Jun‐ichi, and Yoshifumi Katayama. "Low‐temperature micro‐photoluminescence using confocal microscopy." Review of Scientific Instruments 66, no. 7 (July 1995): 3738–43. http://dx.doi.org/10.1063/1.1145431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pickin, William. "Low-temperature photoluminescence spectrum of amorphous semiconductors." Physical Review B 40, no. 17 (December 15, 1989): 12030–33. http://dx.doi.org/10.1103/physrevb.40.12030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kovalev, D., J. Diener, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al L. Efros, and M. Rosen. "Low-temperature photoluminescence upconversion in porous Si." Physical Review B 61, no. 23 (June 15, 2000): 15841–47. http://dx.doi.org/10.1103/physrevb.61.15841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Churmanov, V. N., N. B. Gruzdev, V. I. Sokolov, V. A. Pustovarov, V. Yu Ivanov, and N. A. Mironova-Ulmane. "Low-temperature photoluminescence in NixMg1−xO nanocrystals." Low Temperature Physics 41, no. 3 (March 2015): 233–35. http://dx.doi.org/10.1063/1.4915911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feng, W., F. Chen, Q. Huang, and J. M. Zhou. "Photoluminescence of low-temperature multiple quantum wells." Journal of Crystal Growth 175-176 (May 1997): 1173–77. http://dx.doi.org/10.1016/s0022-0248(96)01041-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lan, Y. C., X. L. Chen, Y. G. Cao, Y. P. Xu, L. D. Xun, T. Xu, and J. K. Liang. "Low-temperature synthesis and photoluminescence of AlN." Journal of Crystal Growth 207, no. 3 (December 1999): 247–50. http://dx.doi.org/10.1016/s0022-0248(99)00448-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Low temperature photoluminescence"

1

Penwell, David James Kruger Michael B. "Photoluminescence of CdTe:In under high pressure and low temperature." Diss., UMK access, 2004.

Find full text
Abstract:
Thesis (M.S.)--Dept. of Physics. University of Missouri--Kansas City, 2004.
"A thesis in physics." Typescript. Advisor: Michael B. Kruger. Vita. Title from "catalog record" of the print edition Description based on contents viewed Feb. 28, 2006. Includes bibliographical references (leaves 32-33 ). Online version of the print edition.
APA, Harvard, Vancouver, ISO, and other styles
2

Tsagli, Kelvin Xorla. "Temperature Dependence of Photoluminescence Spectra in Polystyrene." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1625744248503334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Armstrong, Helen. "Variable-temperature photoluminescence emission instrumentation and measurements on low yield metals." Thesis, Durham University, 2010. http://etheses.dur.ac.uk/374/.

Full text
Abstract:
Measurements of the photoluminescence emission spectra of 99.999 % purity gold, 99.9999 % purity copper, polycrystalline PbMo6S8 and single crystal YBCO were made for λex = 488 nm as a function of temperature (72 K < T < 300 K), time (t < 12 hours), excitation power (P < 120 mW) and position on the sample using a high sensitivity instrument which was designed, commissioned and calibrated for this study. We present the first measurements of the photoluminescence emission spectra of gold and copper as a function of temperature which show peak photoluminescence emission intensity increasing by approximately a factor of two for gold and a factor of five for copper between 300 K and 79 K. Full width half maximum (FWHM) and peak photoluminescence emission wavelength showed no dependence upon temperature. The spectra compare well to published data and data modelled using theories presented in the literature. Variable temperature measurements on the superconductors PbMo6S8 and YBCO in their normal state show peak photoluminescence intensity increasing by a factor of 1.5 between 300 K and 80 K for PbMo6S8 and a factor of 2 between 300 K and 131 K for YBCO. A decrease in FWHM of 20 - 30 nm is observed with no change in peak photoluminescence wavelength. Measurements for 99.99 % purity single crystal niobium, polycrystalline SnMo6S8 and single crystal DyBCO superconductors are also presented, however, these samples exhibited problems with oxidation, impurities or damage to the sample surface. Two interesting features which remain unexplained from this work include a variation in photoluminescence emission intensity over < 12 hours with a period of ~400 minutes for gold and copper and a continuous decrease in intensity for niobium, SnMo6S8 and YBCO and an increase in photoluminescence emission intensity by a factor of 4 at low temperatures in PbMo6S8, SnMo6S8 and YBCO.
APA, Harvard, Vancouver, ISO, and other styles
4

Sullivan, Wayne. "A low temperature photoluminescence study of radiation induced defects in silicon carbide." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Banishev, A. A., A. A. Lotin, and A. F. Banishev. "Deformation Stimulated Luminescence of Nano-micro-parcticles SrAl2O4:(Eu2+, Dy3+) in a Matrix of Photopolymer and Creation of Sensor Elements of Mechanical Stresses." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35389.

Full text
Abstract:
The work deals with low-temperature photoluminescence and deformation luminescence (mechanolu-minescence) of a composite material based on fine disperse powder of phosphor SrAl2O4:(Eu2+, Dy3+) and photopolymerizing resin that is transparent in the visible region. It has been shown that at the low tem-perature (T=15÷200 K) the photoluminescence spectrum of SrAl2O4:(Eu2+, Dy3+) displays two wide, partial-ly overlapping bands with the maxima at λ1max517 nm and λ2max446 nm. The short-wave luminescence band (λ2max446 nm) has been found to undergo temperature quenching and to completely decay at T200 K. A mechanism of mechanoluminescence excitation has been suggested. It has been shown that the com-posite material exhibits high sensitivity to mechanical action. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35389
APA, Harvard, Vancouver, ISO, and other styles
6

Lama, Lars, and Axel Nordström. "Photoluminescence and AFM characterization of silicon nanocrystals prepared by low-temperature plasma enhanced chemical vapour depositon and annealing." Thesis, KTH, Fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103001.

Full text
Abstract:
When studying quantum dots one of the most important properties is the size of the band gap, and thus also their physical dimensions. We investigated these properties for silicon quantum dots created by means of plasma-enhanced chemical vapour deposition and annealing. To determine the band gap size we measured photoluminescence for ten dierent samples and to determine the physical dimensions we used an atomic force microscope. The photoluminescence measurements indicated that the intensity of the emitted photons varied across the samples, but did not indicate any shift in peak wavelength between samples nor any time-dependence of the luminescence. The peak wavelength was in the order of 600 to 620 nm, corresponding to a band gap of 2.0 to 2.1 eV and a physical size of approximately 3 nm. The AFM scans revealed densely packed quantum dots, where few single objects could be distinguished. In order to be able to perform a better statistical analysis, eorts would have to be taken to separate the quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
7

Vijarnwannaluk, Sathon. "Optical studies of GaAs:C grown at low temperature and of localized vibrations in normal GaAs:C." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27491.

Full text
Abstract:
Optical studies of heavily-doped GaAs:C grown at low temperature by molecular beam epitaxy were performed using room-temperature photoluminescence, infrared transmission, and Raman scattering measurements. The photoluminescence experiments show that in LT-GaAs:C films grown at temperatures below 400 °C, nonradiative recombination processes dominate and photoluminescence is quenched. When the growth temperature exceeds 400 °C, band-to-band photoluminescence emission appears. We conclude that the films change in character from LT-GaAs:C to normal GaAs:C once the growth temperature reaches 400 °C. Annealing, however, shows a different behavior. Once grown as LT-GaAs:C, this material retains its nonconducting nonluminescing LT characteristics even when annealed at 600 °C. The Raman-scattering measurements showed that the growth temperature and the doping concentration influence the position, broadening, and asymmetry of the longitudinal-optical phonon Raman line. We attribute these effects to changes in the concentration of interstitial carbon in the films. Also, the shift of the Raman line was used to estimate the concentration of arsenic-antisite defects in undoped LT-GaAs. The infrared transmission measurements on the carbon-doped material showed that only a fraction of the carbon atoms occupy arsenic sites, that this fraction increases as the growth temperature increases, and that it reaches about 100% once the growth temperature reaches 400 °C. The details of all these measurements are discussed. Infrared transmission and photoluminescence measurements were also carried out on heavily-doped GaAs:C films grown by molecular beam epitaxy at the standard 600 C temperature. The infrared results reveal, for dopings under 5 x 10⁹ cm⁻³, a linear relation between doping concentration and the integrated optical absorption of the carbon localized-vibrational-mode band. At higher dopings, the LVM integrated absorption saturates. Formation of CAs-CAs clusters is proposed as the mechanism of the saturation. The photoluminescence spectra were successfully analyzed with a simple model assuming thermalization of photoelectrons to the bottom of the conduction band and indirect-transition recombination with holes populating the degenerately doped valence band. The analysis yields the bandgap reduction and the Fermi-level-depth increase at high doping.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
8

Moroni, Didier. "Etude des proprietes optiques de semi-conducteurs composes iii-v et de puits quantiques par photoluminescence et excitation de la photoluminescence." Paris 6, 1987. http://www.theses.fr/1987PA066540.

Full text
Abstract:
Identification des types de recombinaison entre 2 et 300k dans les couches epaisses de gainas et gainp epitaxiees sur leur support respectif inp et gaas. Etude de l'origine de la luminescence et variation en fonction de l'epaisseur du taux de capture des porteurs de la barriere dans les puits quantiques ingaas/inp. Determination du coefficient d'interdiffusion de al et ga aux interfaces dans les puits quantiques gaas/gaalas
APA, Harvard, Vancouver, ISO, and other styles
9

Syed, Abdul Samad. "Growth and Characterization of ZnO Nanostructures." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72956.

Full text
Abstract:
A close relation between structural and optical properties of any semiconductor material does exist. An adequate knowledge and understanding of this relationship is necessary for fabrication of devices with desired optical properties. The structural quality and hence the optical properties can be influenced by the growth method and the substrate used. The aim of this work was to investigate the change in optical properties caused by growth techniques and substrate modification. To study the influence of growth technique on optical properties, ZnO nanostructures were grown using atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and chemical bath deposition (CBD) technique. The structural and optical investigations were performed using scanning electron microscopy (SEM) and micro photoluminescence (μ-PL), respectively. The results revealed that the grown structures were in the shape of nano-rods with slightly different shapes. Optical investigation revealed that low temperature PL spectrum for both the samples was dominated by neutral donor bound excitons emission and it tends to be replaced by free exciton (FX) emission in the temperature range of 60-140K. Both excitonic emissions show a typical red-shift with increase in temperature but with a different temperature dynamics for both the sample and this is due to difference in exciton-phonon interaction because of the different sizes of nano-rods. Defect level emission (DLE) is negligible in both the sample at low temperature but it increased linearly in intensity after 130 K up to the room temperature.Modification in substrate can also play a significant role on structural and optical properties of the material. Specially variation in the miscut angle of substrate can help to control the lateral sizes of the Nanostructures and thus can help to obtain better structural andoptical quality. Also optical quality is a key requirement for making blue and ultraviolet LEDs. Therefore, ZnO Nanostructures were grown on SiC on-axis and off-axis substrates having different off-cut angles. Morphological investigation revealed thatgrown structures are epitaxial for the case when substrate off-cut angle is higher and deposition rate is low. Low temperature PL spectrum of all the samples was dominated by neutral donor bound excitons and free exciton emission become dominant at 100 K for all the samples which completely eliminate the neutral donor bound excitonic emission at 160K. Two electron satellite of the neutral donor bound excitons and LO phonons of excitonic features are also present. A typical red-shift in excitonic features was evident in temperature dependence measurement. Red-shift behavior of free exciton for all the samples was treated by applying Varshni empirical expression and several important parameter, such as, the Debye temperature and the band gap energy value was extracted. Thermal quenching behavior was also observed and treated by thermal quenching expression and value of the activation energy for non-radiative channel was extracted. The results that are obtained demonstrate a significant contribution in the fields of ZnO based nano-optoelectronics and nano-electronics.
APA, Harvard, Vancouver, ISO, and other styles
10

Zoulis, Georgios. "Structural and optical characterization of SiC." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20015/document.

Full text
Abstract:
Ce travail porte sur la caractérisation structurale et optique d'échantillons de SiC. Les échantillons étudiés ont été répartis en trois groupes : des échantillons massifs, des couches épitaxiales épaisses et enfin des couches minces. La croissance des échantillons massifs a été réalisée avec la technique CF-PVT, utilisant une géométrie « d'étranglement ». L'objectif était de filtrer les défauts afin de créer des germes de 3C de haute pureté. La croissance de des couches épaisses par sublimation avait comme objectif la maitrise d'un dopage résiduel faible de type n et p pour des applications composants. Enfin, dans le but de réaliser des composants de type LED blanche des impuretés Ga ont été introduites dans des couches minces épitaxiées par VLS afin de créer des échantillons fortement dopé de type p. Tous ces échantillons ont été étudiés par photoluminescence, micro-Raman, SIMS et microscopie électronique à transmission. Il a été possible de déterminer la concentration d'impuretés et d'identifier le caractère n ou p de ces échantillons. L'analyse des échantillons a été faite en utilisant à la fois l'observation des défauts structurels et les informations obtenues à partir des techniques de caractérisation optique. Nous avons pu obtenir des informations sur les paramètres physiques de 3C-SiC, comme l'énergie de liaison de Ga et Al, la structure fine des excitons liés à l'Al et celle des paires donneurs accepteurs Al-N et Ga-N. Enfin l'apparition d'un nouveau défaut de structure appelée le « fourfold twin » a été observée
The main topic of this thesis is the structural and optical characterization of SiC samples. The samples were divided in three groups: bulk, thick and thin epilayers. The bulk samples were grown with the CF-PVT technique and used a modified crystal holder geometry. The objective was to filter the defects to and create high purity and quality seeds of 3C-SiC. The thick epilayers were grown with the sublimation epitaxy technique, trying to demonstrate the creation of low impurity n and p type layers for device applications. Finally the thin epilayers were grown with the vapour-liquid-solid technique and doped with Ga impurities in an effort to create either heavily p-type doped samples and components for white LED applications. The samples were studied with low temperature photoluminescence, micro-Raman, SIMS and transmission electron microscopy. With the help of these techniques it was possible to determine the impurity concentration and identif y the n or p character of these samples. A qualitative analysis of the quality of the samples was done using both the observation of the structural defects and the information from the optical characterization techniques. We were able to acquire information about physical parameters of 3C-SiC like the binding energy of Ga and Al, the Al bound exciton fine structure and the Al-N and Ga-N donor acceptor pair fine structure. The appearance of a new structural defect called the fourfold twin was observed and presented
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Low temperature photoluminescence"

1

Korn, T., G. Plechinger, S. Heydrich, F. X. Schrettenbrunner, J. Eroms, D. Weiss, and C. Schüller. "Optical Characterization, Low-Temperature Photoluminescence, and Photocarrier Dynamics in MoS2." In Lecture Notes in Nanoscale Science and Technology, 217–36. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02850-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krotkus, A., S. Marcinkevičius, and R. Viselga. "Ultrafast Photoluminescence Decay in GaAs grown by Low-Temperature Molecular-Beam-Epitaxy." In Hot Carriers in Semiconductors, 113–15. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Glaser, E. R., B. V. Shanabrook, W. E. Carlos, Hun Jae Chung, Saurav Nigam, A. Y. Polyakov, and Marek Skowronski. "Conditions and Limitations of Using Low-Temperature Photoluminescence to Determine Residual Nitrogen Levels in Semi-Insulating SiC Substrates." In Silicon Carbide and Related Materials 2005, 613–16. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakai, K., K. Ishikura, A. Fukuyama, I. A. Palani, M. S. Ramachandra Rao, T. Okada, and T. Ikari. "Low-Temperature Photoluminescence of Sb-doped ZnO Nanowires Synthesized on Sb-coated Si Substrate by Chemical Vapor Deposition Method." In ZnO Nanocrystals and Allied Materials, 331–39. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1160-0_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Feng, Robert P. Devaty, W. J. Choyke, A. Gali, Frank Schmid, Gerhard Pensl, and Günter Wagner. "Evolution of Defect and Hydrogen-Related Low Temperature Photoluminescence Spectra with Annealing for Hydrogen or Helium Implanted 6H SiC." In Materials Science Forum, 493–96. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haberstroh, Ch, R. Helbig, and S. Leibenzeder. "Low Temperature Photoluminescence of SiC: A Method for Material Characterization and the Influence of an Uniaxial Stress on the Spectra." In Springer Proceedings in Physics, 221–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84804-9_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Misiewicz, J. "The Low Temperature Photoluminescence in Zn 3 P 2." In May 16, 505–8. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112495223-062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mugeński, E., and R. Cywiński. "Low-Temperature Photoluminescence of Eu2+ Aggregate Centres in NaCl Matrix." In March 1, 433–38. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494585-054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhilyaev, Yu V., V. V. Krivolapchuk, A. V. Rodionov, V. V. Rossin, T. V. Rossina, and Yu N. Sveshnikov. "The Investigation of a Transition Layer in Epitaxial GaAs by the Low Temperature Photoluminescence Technique." In May 16, 481–84. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494646-058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burke, M. G., W. J. Choyke, Z. C. Feng, and M. H. Hanes. "Characterization of defect structures in MBE-grown (001) CdTe films by TEM and low-temperature photoluminescence." In Microscopy of Semiconducting Materials, 1987, 147–52. CRC Press, 2020. http://dx.doi.org/10.1201/9781003069621-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Low temperature photoluminescence"

1

Kobori, H., A. Shigetani, I. Umezu, and A. Sugimura. "Unusual Behavior on Line-Broadening of Photoluminescence Spectrum for Type-II Excitons in Highly Si-Doped GaAs/AlAs Short-Period-Superlattices." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yung-Chiun Her, Jer-Yau Wu, Yan-Ru Lin, and Song-Yeu Tsai. "Low-Temperature Growth of SnO2Nanoblades and Their Photoluminescence Properties." In 2006 Sixth IEEE Conference on Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/nano.2006.247738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nagao, Y., Y. Kuwamura, A. Nizamuddin, T. Nakahora, T. Hotani, N. Katsuki, and T. Katsuyama. "Low-temperature Photoluminescence Characteristics of GaAs Quantum-well Waveguides." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.p-7-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SALAH, A., G. ABDEL FATTAH, Y. BADR, and I. K. ELZAWAWY. "RAMAN SPECTROSCOPY AND LOW TEMPERATURE PHOTOLUMINESCENCE ZnSexTe1-x TERNARY ALLOYS." In Proceedings of the Sixth International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789812814609_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koteles, Emil S., J. Y. Chi, and R. P. Holmstrom. "Low Temperature Photoluminescence Signature Of A Two-Dimensional Electron Gas." In Semiconductor Conferences, edited by Orest J. Glembocki, Fred H. Pollak, and Jin-Joo Song. SPIE, 1987. http://dx.doi.org/10.1117/12.940893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SALAH, A., G. ABDEL FATTAH, I. K. ELZAWAWY, and Y. BADR. "LOW TEMPERATURE PHOTOLUMINESCENCE AND PHOTOCONDUCTIVITY OF ZnSexTe1-x TERNARY ALLOYS." In Proceedings of the Third International Conference on Modern Trends in Physics Research. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814317511_0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kobayashi, Toshihiko. "Low Temperature Photoluminescence Of GaAs/GaInP Heterostructures Measured Under Hydrostatic Pressure." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Zhao, Zhi-yong Zhang, Zhou-hu Deng, Xue-wen Wang, Jun-feng Yan, and Yun-jiang Ni. "Epitaxial growth of SiC films at low temperature and its photoluminescence." In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bao, Xue J., Ralph B. James, C. Y. Hung, Tuviah E. Schlesinger, A. Y. Cheng, Carol Ortale, and Lodewijk Van den Berg. "Study of stoichiometry in mercuric iodide by low-temperature photoluminescence spectroscopy." In San Diego '92, edited by Richard B. Hoover. SPIE, 1993. http://dx.doi.org/10.1117/12.140487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andrianov, A. V., A. O. Zakhra'in, and O. V. Aleksandrov. "Low temperature terahertz photoluminescence from silicon crystals at interband optical excitation." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8066940.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Low temperature photoluminescence"

1

Roberts, Adam T., and Henry O. Everitt. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs). Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada614121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Folkes, P. A., J. Little, S. Svensson, and K. Olver. Low Temperature Photoluminescence and Leakage Current Characteristics of InAs-GaSb Superlattice Photodiodes. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada486120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography