Journal articles on the topic 'Low-swirl'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low-swirl.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xiao, Yinli, Zhibo Cao, and Changwu Wang. "Flame stability limits of premixed low-swirl combustion." Advances in Mechanical Engineering 10, no. 9 (September 2018): 168781401879087. http://dx.doi.org/10.1177/1687814018790878.
Full textKida, Shigeo, and Hideaki Miura. "Swirl Condition in Low-Pressure Vortices." Journal of the Physical Society of Japan 67, no. 7 (July 15, 1998): 2166–69. http://dx.doi.org/10.1143/jpsj.67.2166.
Full textVerbeek, Anton A., Thijs W. F. M. Bouten, Genie G. M. Stoffels, Bernard J. Geurts, and Theo H. van der Meer. "Fractal turbulence enhancing low-swirl combustion." Combustion and Flame 162, no. 1 (January 2015): 129–43. http://dx.doi.org/10.1016/j.combustflame.2014.07.003.
Full textJeong, Hwanghui, and Keeman Lee. "Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor." Journal of the Korean Society of Propulsion Engineers 20, no. 4 (August 1, 2016): 40–49. http://dx.doi.org/10.6108/kspe.2016.20.4.040.
Full textWang, Y., W. Xu, H. Yin, Y. Zhang, and H. S. Dou. "Numerical study on the influence of pre-swirl angle on internal flow characteristics of centrifugal pumps." AIP Advances 12, no. 4 (April 1, 2022): 045019. http://dx.doi.org/10.1063/5.0085903.
Full textWang, Xuegao, Jun Hu, Jin Guo, Baofeng Tu, and Zhiqiang Wang. "An experimental investigation on the interaction between inlet swirl distortion and a low-speed axial compressor." Science Progress 103, no. 3 (July 2020): 003685042094092. http://dx.doi.org/10.1177/0036850420940920.
Full textBalakrishnan, P., and K. Srinivasan. "Pipe jet noise reduction using co-axial swirl pipe." Aeronautical Journal 121, no. 1238 (March 6, 2017): 488–514. http://dx.doi.org/10.1017/aer.2017.5.
Full textHsu, Yun, and Christopher E. Brennen. "Effect of Swirl on Rotordynamic Forces Caused by Front Shroud Pump Leakage." Journal of Fluids Engineering 124, no. 4 (December 1, 2002): 1005–10. http://dx.doi.org/10.1115/1.1511164.
Full textKang, D. M., F. E. C. Culick, and A. Ratner. "Combustion dynamics of a low-swirl combustor." Combustion and Flame 151, no. 3 (November 2007): 412–25. http://dx.doi.org/10.1016/j.combustflame.2007.07.017.
Full textLi, Shuai, Yan Liu, Mohammad Omidi, Chuang Zhang, and Hongkun Li. "Numerical Investigation of Transient Flow Characteristics in a Centrifugal Compressor Stage with Variable Inlet Guide Vanes at Low Mass Flow Rates." Energies 14, no. 23 (November 25, 2021): 7906. http://dx.doi.org/10.3390/en14237906.
Full textTrinchenko, Alexey. "Low-temperature swirl method of burning combustible waste." E3S Web of Conferences 91 (2019): 04003. http://dx.doi.org/10.1051/e3sconf/20199104003.
Full textHu, Bo, Yulong Yao, Minfeng Wang, Chuan Wang, and Yanming Liu. "Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation." Machines 11, no. 1 (January 5, 2023): 68. http://dx.doi.org/10.3390/machines11010068.
Full textPazur, W., and L. Fottner. "The Influence of Inlet Swirl Distortions on the Performance of a Jet Propulsion Two-Stage Axial Compressor." Journal of Turbomachinery 113, no. 2 (April 1, 1991): 233–40. http://dx.doi.org/10.1115/1.2929091.
Full textSogbesan, Oluwasujibomi, Colin P. Garner, and Martin H. Davy. "Effects of intake-port throttling on combustion behaviour in diesel low-temperature combustion." International Journal of Engine Research 19, no. 8 (September 29, 2017): 827–38. http://dx.doi.org/10.1177/1468087417732881.
Full textElbaz, A. M., H. A. Moneib, K. M. Shebil, and W. L. Roberts. "Low NOX - LPG staged combustion double swirl flames." Renewable Energy 138 (August 2019): 303–15. http://dx.doi.org/10.1016/j.renene.2019.01.070.
Full textWhitfield, A., and A. H. Abdullah. "The Performance of a Centrifugal Compressor With High Inlet Prewhirl." Journal of Turbomachinery 120, no. 3 (July 1, 1998): 487–93. http://dx.doi.org/10.1115/1.2841744.
Full textRusak, Zvi, Jung J. Choi, Nicholas Bourquard, and Shixiao Wang. "Vortex breakdown in premixed reacting flows with swirl in a finite-length circular open pipe." Journal of Fluid Mechanics 793 (March 22, 2016): 749–76. http://dx.doi.org/10.1017/jfm.2016.140.
Full textJózsa, Viktor, and Gergely Novotni. "Wavelet analysis of flame blowout of a liquid-fueled swirl burner with quarls." Noise Control Engineering Journal 67, no. 5 (September 1, 2019): 394–403. http://dx.doi.org/10.3397/1/376734.
Full textJebamani, Rathnaraj, and Narendra Kumar. "Studies on variable swirl intake system for DI diesel engine using computational fluid dynamics." Thermal Science 12, no. 1 (2008): 25–32. http://dx.doi.org/10.2298/tsci0801025j.
Full textTrinchenko, Alexey. "Research of nitrogen oxides generation during low-temperature swirl fuel combustion." MATEC Web of Conferences 193 (2018): 03054. http://dx.doi.org/10.1051/matecconf/201819303054.
Full textYan, Youyou, Mahmood Farzaneh Gord, Gary D. Lock, Michael Wilson, and J. Michael Owen. "Fluid Dynamics of a Pre-Swirl Rotor-Stator System." Journal of Turbomachinery 125, no. 4 (October 1, 2003): 641–47. http://dx.doi.org/10.1115/1.1578502.
Full textTsai, Feng Chin, and Rong Fung Huang. "Topological Flow Structures of Annular Swirling Jets." Journal of Mechanics 17, no. 3 (September 2001): 131–38. http://dx.doi.org/10.1017/s1727719100004494.
Full textYEGIAN, D. T., and R. K. CHENG. "Development of a Lean Premixed Low-Swirl Burner for Low NOxPractical Applications." Combustion Science and Technology 139, no. 1 (October 1998): 207–27. http://dx.doi.org/10.1080/00102209808952088.
Full textSun, Yicheng, Yufan Fu, Baohui Chen, Jiaxing Lu, and Wanquan Deng. "Numerical Simulation and Experimental Study on Flow Field in a Swirl Nozzle." Shock and Vibration 2021 (January 25, 2021): 1–9. http://dx.doi.org/10.1155/2021/6626715.
Full textParra, Teresa, David Pastor, Ruben Pérez, and José Molina. "Numerical Modelling of Swirl-Stabilized Turbulent Lean Non-Premixed Flames." Advanced Engineering Forum 29 (August 2018): 62–66. http://dx.doi.org/10.4028/www.scientific.net/aef.29.62.
Full textHan, J. O., and S. S. Kim. "Effects of Swirl on High-Speed Combustion in a Single-Shot Optical SI Engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206, no. 4 (October 1992): 237–47. http://dx.doi.org/10.1243/pime_proc_1992_206_184_02.
Full textRodriguez-Martinez, Victor M., James R. Dawson, Tim O'Doherty, and Nickolas Syred. "Low-Frequency Combustion Oscillations in a Swirl Burner/Furnace." Journal of Propulsion and Power 22, no. 1 (January 2006): 217–21. http://dx.doi.org/10.2514/1.12010.
Full textMassaguer, Josep M., and Isabel Mercader. "Instability of swirl in low-Prandtl-number thermal convection." Journal of Fluid Mechanics 189 (April 1988): 367–95. http://dx.doi.org/10.1017/s0022112088001065.
Full textMansour, Mohy, and Yung-Cheng Chen. "Stability characteristics and flame structure of low swirl burner." Experimental Thermal and Fluid Science 32, no. 7 (July 2008): 1390–95. http://dx.doi.org/10.1016/j.expthermflusci.2007.11.012.
Full textLegrand, Mathieu, José Nogueira, Antonio Lecuona, Sara Nauri, and Pedro A. Rodríguez. "Atmospheric low swirl burner flow characterization with stereo PIV." Experiments in Fluids 48, no. 5 (November 18, 2009): 901–13. http://dx.doi.org/10.1007/s00348-009-0775-6.
Full textDeng, Yangbo, Hongwei Wu, and Fengmin Su. "Combustion and exhaust emission characteristics of low swirl injector." Applied Thermal Engineering 110 (January 2017): 171–80. http://dx.doi.org/10.1016/j.applthermaleng.2016.08.169.
Full textten Thij, G. D., A. A. Verbeek, and T. H. van der Meer. "Application of Fractal Grids in Industrial Low-Swirl Combustion." Flow, Turbulence and Combustion 96, no. 3 (October 27, 2015): 801–18. http://dx.doi.org/10.1007/s10494-015-9670-9.
Full textHwang, Donghyun, Cheolwoong Kang, and Kyubok Ahn. "Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor." Energies 15, no. 22 (November 14, 2022): 8492. http://dx.doi.org/10.3390/en15228492.
Full textYazdani, Kaveh, Ehsan Amani, and Hamid Naderan. "Multi-objective optimizations of the boot injection strategy for reactivity controlled compression ignition engines." International Journal of Engine Research 20, no. 8-9 (August 31, 2018): 889–910. http://dx.doi.org/10.1177/1468087418795599.
Full textNovotni, Gergely, and Viktor Józsa. "Sound Pressure Level Analysis of a Liquid-Fueled Lean Premixed Swirl Burner with Various Quarls." Acoustics 2, no. 1 (March 1, 2020): 131–46. http://dx.doi.org/10.3390/acoustics2010010.
Full textNasr, G. G., A. J. Yule, J. A. Stewart, A. Whitehead, and T. Hughes. "A new fine spray, low flowrate, spill-return swirl atomizer." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 4 (April 2011): 897–908. http://dx.doi.org/10.1243/09544062jmes2675.
Full textHan, Han, Pengfei Wang, Ronghua Liu, and Chang Tian. "Experimental study on atomization characteristics and dust-reduction performance of four common types of pressure nozzles in underground coal mines." International Journal of Coal Science & Technology 7, no. 3 (May 27, 2020): 581–96. http://dx.doi.org/10.1007/s40789-020-00329-w.
Full textHelgadóttir, Ásdís, Sylvain Lalot, Francois Beaubert, and Halldór Pálsson. "Mesh Twisting Technique for Swirl Induced Laminar Flow Used to Determine a Desired Blade Shape." Applied Sciences 8, no. 10 (October 10, 2018): 1865. http://dx.doi.org/10.3390/app8101865.
Full textShi, R. X., and B. Chehroudi. "Velocity Characteristics of a Confined Highly-Turbulent Swirling Flow Near a Swirl Plate (Data Bank Contribution)." Journal of Fluids Engineering 116, no. 4 (December 1, 1994): 685–93. http://dx.doi.org/10.1115/1.2911836.
Full textHao, Jiangang, Yang Ding, Chen Yang, Xuhuai Wang, Xiang Zhang, Yong Liu, and Feng Jin. "Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes." Energies 15, no. 23 (November 27, 2022): 8972. http://dx.doi.org/10.3390/en15238972.
Full textLi, Z. Q., Z. C. Chen, R. Sun, and S. H. Wu. "New low NOx, low grade coal fired swirl stabilised technology." Journal of the Energy Institute 80, no. 3 (September 1, 2007): 123–30. http://dx.doi.org/10.1179/174602207x216200.
Full textCheng, R. K., D. T. Yegian, M. M. Miyasato, G. S. Samuelsen, C. E. Benson, R. Pellizzari, and P. Loftus. "Scaling and development of low-swirl burners for low-emission furnaces and boilers." Proceedings of the Combustion Institute 28, no. 1 (January 2000): 1305–13. http://dx.doi.org/10.1016/s0082-0784(00)80344-6.
Full textWilhelm, Manuel, and Heinz-Peter Schiffer. "Experimental Investigation of Rotor Tip Film Cooling at an Axial Turbine with Swirling Inflow Using Pressure Sensitive Paint." International Journal of Turbomachinery, Propulsion and Power 4, no. 3 (August 1, 2019): 23. http://dx.doi.org/10.3390/ijtpp4030023.
Full textLi, Y., H. Zhao, and N. Ladommatos. "Analysis of large-scale flow characteristics in a four-valve spark ignition engine." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 216, no. 9 (September 1, 2002): 923–38. http://dx.doi.org/10.1177/095440620221600906.
Full textNolan, David S., Nathan A. Dahl, George H. Bryan, and Richard Rotunno. "Tornado Vortex Structure, Intensity, and Surface Wind Gusts in Large-Eddy Simulations with Fully Developed Turbulence." Journal of the Atmospheric Sciences 74, no. 5 (May 1, 2017): 1573–97. http://dx.doi.org/10.1175/jas-d-16-0258.1.
Full textLewellen, D. C., and W. S. Lewellen. "Near-Surface Vortex Intensification through Corner Flow Collapse." Journal of the Atmospheric Sciences 64, no. 7 (July 1, 2007): 2195–209. http://dx.doi.org/10.1175/jas3966.1.
Full textHemalatha, Arumugam, and Nainarkuppam Mahalakshmi. "Experimental investigations of flow through wide angle conical diffusers with uniform flow and swirl type velocity distortions at inlet." Thermal Science 22, no. 6 Part A (2018): 2571–81. http://dx.doi.org/10.2298/tsci170817223h.
Full textFishman, G., M. Wolfinger, and D. Rockwell. "The structure of a trailing vortex from a perturbed wing." Journal of Fluid Mechanics 824 (July 10, 2017): 701–21. http://dx.doi.org/10.1017/jfm.2017.331.
Full textKhil, Taeock, Yunjae Chung, Vladimir G. Bazarov, and Youngbin Yoon. "Dynamic Characteristics of Simplex Swirl Injector in Low Frequency Range." Journal of Propulsion and Power 28, no. 2 (March 2012): 323–33. http://dx.doi.org/10.2514/1.b34169.
Full textSpangelo, O., T. Slungaard, T. Engebretsen, and O. K. Sonju. "DEVELOPMENT OF A LOW-NOx SWIRL BURNER FOR GASEOUS FUELS." Clean Air: International Journal on Energy for a Clean Environment 7, no. 3 (2006): 203–20. http://dx.doi.org/10.1615/interjenercleanenv.v7.i3.20.
Full text