Journal articles on the topic 'Low-Rank matrix approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low-Rank matrix approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ting Liu, Ting Liu, Mingjian Sun Mingjian Sun, Naizhang Feng Naizhang Feng, Minghua Wang Minghua Wang, Deying Chen Deying Chen, and and Yi Shen and Yi Shen. "Sparse photoacoustic microscopy based on low-rank matrix approximation." Chinese Optics Letters 14, no. 9 (2016): 091701–91705. http://dx.doi.org/10.3788/col201614.091701.
Full textParekh, Ankit, and Ivan W. Selesnick. "Enhanced Low-Rank Matrix Approximation." IEEE Signal Processing Letters 23, no. 4 (April 2016): 493–97. http://dx.doi.org/10.1109/lsp.2016.2535227.
Full textFomin, Fedor V., Petr A. Golovach, and Fahad Panolan. "Parameterized low-rank binary matrix approximation." Data Mining and Knowledge Discovery 34, no. 2 (January 2, 2020): 478–532. http://dx.doi.org/10.1007/s10618-019-00669-5.
Full textFomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. "Approximation Schemes for Low-rank Binary Matrix Approximation Problems." ACM Transactions on Algorithms 16, no. 1 (January 11, 2020): 1–39. http://dx.doi.org/10.1145/3365653.
Full textZhenyue Zhang and Keke Zhao. "Low-Rank Matrix Approximation with Manifold Regularization." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 7 (July 2013): 1717–29. http://dx.doi.org/10.1109/tpami.2012.274.
Full textXu, An-Bao, and Dongxiu Xie. "Low-rank approximation pursuit for matrix completion." Mechanical Systems and Signal Processing 95 (October 2017): 77–89. http://dx.doi.org/10.1016/j.ymssp.2017.03.024.
Full textBarlow, Jesse L., and Hasan Erbay. "Modifiable low-rank approximation to a matrix." Numerical Linear Algebra with Applications 16, no. 10 (October 2009): 833–60. http://dx.doi.org/10.1002/nla.651.
Full textJia, Yuheng, Hui Liu, Junhui Hou, and Qingfu Zhang. "Clustering Ensemble Meets Low-rank Tensor Approximation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 7970–78. http://dx.doi.org/10.1609/aaai.v35i9.16972.
Full textTropp, Joel A., Alp Yurtsever, Madeleine Udell, and Volkan Cevher. "Practical Sketching Algorithms for Low-Rank Matrix Approximation." SIAM Journal on Matrix Analysis and Applications 38, no. 4 (January 2017): 1454–85. http://dx.doi.org/10.1137/17m1111590.
Full textLiu, Huafeng, Liping Jing, Yuhua Qian, and Jian Yu. "Adaptive Local Low-rank Matrix Approximation for Recommendation." ACM Transactions on Information Systems 37, no. 4 (December 10, 2019): 1–34. http://dx.doi.org/10.1145/3360488.
Full textAmini, Arash, Amin Karbasi, and Farokh Marvasti. "Low-Rank Matrix Approximation Using Point-Wise Operators." IEEE Transactions on Information Theory 58, no. 1 (January 2012): 302–10. http://dx.doi.org/10.1109/tit.2011.2167714.
Full textHou, Junhui, Lap-Pui Chau, Nadia Magnenat-Thalmann, and Ying He. "Sparse Low-Rank Matrix Approximation for Data Compression." IEEE Transactions on Circuits and Systems for Video Technology 27, no. 5 (May 2017): 1043–54. http://dx.doi.org/10.1109/tcsvt.2015.2513698.
Full textZhang, Zhenyue, and Lixin Wu. "Optimal low-rank approximation to a correlation matrix." Linear Algebra and its Applications 364 (May 2003): 161–87. http://dx.doi.org/10.1016/s0024-3795(02)00551-7.
Full textGillis, Nicolas, and Yaroslav Shitov. "Low-rank matrix approximation in the infinity norm." Linear Algebra and its Applications 581 (November 2019): 367–82. http://dx.doi.org/10.1016/j.laa.2019.07.017.
Full textSong, Guang-Jing, and Michael K. Ng. "Nonnegative low rank matrix approximation for nonnegative matrices." Applied Mathematics Letters 105 (July 2020): 106300. http://dx.doi.org/10.1016/j.aml.2020.106300.
Full textvan der Veen, Alle-Jan. "A Schur Method for Low-Rank Matrix Approximation." SIAM Journal on Matrix Analysis and Applications 17, no. 1 (January 1996): 139–60. http://dx.doi.org/10.1137/s0895479893261340.
Full textSun, Dongxia, and Lihong Zhi. "Structured Low Rank Approximation of a Bezout Matrix." Mathematics in Computer Science 1, no. 2 (October 5, 2007): 427–37. http://dx.doi.org/10.1007/s11786-007-0014-6.
Full textMena, Hermann, Alexander Ostermann, Lena-Maria Pfurtscheller, and Chiara Piazzola. "Numerical low-rank approximation of matrix differential equations." Journal of Computational and Applied Mathematics 340 (October 2018): 602–14. http://dx.doi.org/10.1016/j.cam.2018.01.035.
Full textPersson, David, and Daniel Kressner. "Randomized Low-Rank Approximation of Monotone Matrix Functions." SIAM Journal on Matrix Analysis and Applications 44, no. 2 (June 8, 2023): 894–918. http://dx.doi.org/10.1137/22m1523923.
Full textSoto-Quiros, Pablo. "Error analysis of the generalized low-rank matrix approximation." Electronic Journal of Linear Algebra 37 (July 23, 2021): 544–48. http://dx.doi.org/10.13001/ela.2021.5961.
Full textZhang, Jiani, Jennifer Erway, Xiaofei Hu, Qiang Zhang, and Robert Plemmons. "Randomized SVD Methods in Hyperspectral Imaging." Journal of Electrical and Computer Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/409357.
Full textZhu, E., M. Xu, and D. Pi. "A Novel Robust Principal Component Analysis Algorithm of Nonconvex Rank Approximation." Mathematical Problems in Engineering 2020 (September 30, 2020): 1–17. http://dx.doi.org/10.1155/2020/9356935.
Full textFernández-Val, Iván, Hugo Freeman, and Martin Weidner. "Low-rank approximations of nonseparable panel models." Econometrics Journal 24, no. 2 (March 18, 2021): C40—C77. http://dx.doi.org/10.1093/ectj/utab007.
Full textChen, Zhilong, Peng Wang, and Detong Zhu. "Approximation Conjugate Gradient Method for Low-Rank Matrix Recovery." Symmetry 16, no. 5 (May 2, 2024): 547. http://dx.doi.org/10.3390/sym16050547.
Full textChang, Xiangyu, Yan Zhong, Yao Wang, and Shaobo Lin. "Unified Low-Rank Matrix Estimate via Penalized Matrix Least Squares Approximation." IEEE Transactions on Neural Networks and Learning Systems 30, no. 2 (February 2019): 474–85. http://dx.doi.org/10.1109/tnnls.2018.2844242.
Full textNie, Feiping, Zhanxuan Hu, and Xuelong Li. "Matrix Completion Based on Non-Convex Low-Rank Approximation." IEEE Transactions on Image Processing 28, no. 5 (May 2019): 2378–88. http://dx.doi.org/10.1109/tip.2018.2886712.
Full textZheng, Jianwei, Mengjie Qin, Xiaolong Zhou, Jiafa Mao, and Hongchuan Yu. "Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation." IEEE Transactions on Industrial Informatics 16, no. 1 (January 2020): 488–500. http://dx.doi.org/10.1109/tii.2019.2916986.
Full textHorasan, Fahrettin, Hasan Erbay, Fatih Varçın, and Emre Deniz. "Alternate Low-Rank Matrix Approximation in Latent Semantic Analysis." Scientific Programming 2019 (February 3, 2019): 1–12. http://dx.doi.org/10.1155/2019/1095643.
Full textPitaval, Renaud-Alexandre, Wei Dai, and Olav Tirkkonen. "Convergence of Gradient Descent for Low-Rank Matrix Approximation." IEEE Transactions on Information Theory 61, no. 8 (August 2015): 4451–57. http://dx.doi.org/10.1109/tit.2015.2448695.
Full textPei Chen. "Heteroscedastic Low-Rank Matrix Approximation by the Wiberg Algorithm." IEEE Transactions on Signal Processing 56, no. 4 (April 2008): 1429–39. http://dx.doi.org/10.1109/tsp.2007.909353.
Full textDuan, Xuefeng, Jiaofen Li, Qingwen Wang, and Xinjun Zhang. "Low rank approximation of the symmetric positive semidefinite matrix." Journal of Computational and Applied Mathematics 260 (April 2014): 236–43. http://dx.doi.org/10.1016/j.cam.2013.09.080.
Full textMohd Sagheer, Sameera V., and Sudhish N. George. "Ultrasound image despeckling using low rank matrix approximation approach." Biomedical Signal Processing and Control 38 (September 2017): 236–49. http://dx.doi.org/10.1016/j.bspc.2017.06.011.
Full textLuo, Yu, and Jie Ling. "Single-image de-raining using low-rank matrix approximation." Neural Computing and Applications 32, no. 11 (June 7, 2019): 7503–14. http://dx.doi.org/10.1007/s00521-019-04271-0.
Full textMatveev, Sergey, and Stanislav Budzinskiy. "Sketching for a low-rank nonnegative matrix approximation: Numerical study." Russian Journal of Numerical Analysis and Mathematical Modelling 38, no. 2 (March 1, 2023): 99–114. http://dx.doi.org/10.1515/rnam-2023-0009.
Full textLi, Chi-Kwong, and Gilbert Strang. "An elementary proof of Mirsky's low rank approximation theorem." Electronic Journal of Linear Algebra 36, no. 36 (October 14, 2020): 694–97. http://dx.doi.org/10.13001/ela.2020.5551.
Full textShi, Chengfei, Zhengdong Huang, Li Wan, and Tifan Xiong. "Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization." Journal of Scientific Computing 80, no. 3 (July 15, 2019): 1888–912. http://dx.doi.org/10.1007/s10915-019-01009-x.
Full textLebedeva, O. S., A. I. Osinsky, and S. V. Petrov. "Low-Rank Approximation Algorithms for Matrix Completion with Random Sampling." Computational Mathematics and Mathematical Physics 61, no. 5 (May 2021): 799–815. http://dx.doi.org/10.1134/s0965542521050122.
Full textHuang, Zhi-Long, and Hsu-Feng Hsiao. "Inter-frame Prediction with Fast Weighted Low-rank Matrix Approximation." International Journal of Electronics and Telecommunications 59, no. 1 (March 1, 2013): 9–16. http://dx.doi.org/10.2478/eletel-2013-0001.
Full textKirsteins, I. P., and D. W. Tufts. "Adaptive detection using low rank approximation to a data matrix." IEEE Transactions on Aerospace and Electronic Systems 30, no. 1 (1994): 55–67. http://dx.doi.org/10.1109/7.250406.
Full textXu, Fei, Jingqi Han, Yongli Wang, Ming Chen, Yongyong Chen, Guoping He, and Yunhong Hu. "Dynamic Magnetic Resonance Imaging via Nonconvex Low-Rank Matrix Approximation." IEEE Access 5 (2017): 1958–66. http://dx.doi.org/10.1109/access.2017.2657645.
Full textZhou, Guoxu, Andrzej Cichocki, and Shengli Xie. "Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation." IEEE Transactions on Signal Processing 60, no. 6 (June 2012): 2928–40. http://dx.doi.org/10.1109/tsp.2012.2190410.
Full textNechepurenko, Yuri M., and Miloud Sadkane. "A Low-Rank Approximation for Computing the Matrix Exponential Norm." SIAM Journal on Matrix Analysis and Applications 32, no. 2 (April 2011): 349–63. http://dx.doi.org/10.1137/100789774.
Full textShen, Haipeng, and Jianhua Z. Huang. "Sparse principal component analysis via regularized low rank matrix approximation." Journal of Multivariate Analysis 99, no. 6 (July 2008): 1015–34. http://dx.doi.org/10.1016/j.jmva.2007.06.007.
Full textFeng, Xingdong, and Xuming He. "Statistical inference based on robust low-rank data matrix approximation." Annals of Statistics 42, no. 1 (February 2014): 190–210. http://dx.doi.org/10.1214/13-aos1186.
Full textGillard, J. W., and A. A. Zhigljavsky. "Stochastic algorithms for solving structured low-rank matrix approximation problems." Communications in Nonlinear Science and Numerical Simulation 21, no. 1-3 (April 2015): 70–88. http://dx.doi.org/10.1016/j.cnsns.2014.08.023.
Full textChang, Haixia. "Constrained Low Rank Approximation of the Hermitian Nonnegative-Definite Matrix." Advances in Linear Algebra & Matrix Theory 10, no. 02 (2020): 22–33. http://dx.doi.org/10.4236/alamt.2020.102003.
Full textChen, Yongyong, Yanwen Guo, Yongli Wang, Dong Wang, Chong Peng, and Guoping He. "Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation." IEEE Transactions on Geoscience and Remote Sensing 55, no. 9 (September 2017): 5366–80. http://dx.doi.org/10.1109/tgrs.2017.2706326.
Full textInoue, Kohei, and Kiichi Urahama. "Dimensionality reduction by simultaneous low-rank approximation of matrix data." Electronics and Communications in Japan (Part II: Electronics) 90, no. 9 (2007): 42–49. http://dx.doi.org/10.1002/ecjb.20379.
Full textHutchings, Matthew, and Bertrand Gauthier. "Energy-Based Sequential Sampling for Low-Rank PSD-Matrix Approximation." SIAM Journal on Mathematics of Data Science 6, no. 4 (October 28, 2024): 1055–77. http://dx.doi.org/10.1137/23m162449x.
Full textBrick, Yaniv, and Ali E. Yilmaz. "Rapid Rank Estimation and Low-Rank Approximation of Impedance Matrix Blocks Using Proxy Grids." IEEE Transactions on Antennas and Propagation 66, no. 10 (October 2018): 5359–69. http://dx.doi.org/10.1109/tap.2018.2854361.
Full text