Journal articles on the topic 'Low pressure chemical vapour deposition'

To see the other types of publications on this topic, follow the link: Low pressure chemical vapour deposition.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Low pressure chemical vapour deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Henry, F., B. Armas, R. Berjoan, C. Combescure, and C. Dupuy. "Low pressure chemical vapour deposition of AlN-Si3N4 codeposits." Journal of the European Ceramic Society 17, no. 15-16 (January 1997): 1803–6. http://dx.doi.org/10.1016/s0955-2219(97)00072-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kostana, M., J. Jang, and S. M. Pietruszko. "Stability of low pressure chemical vapour deposition amorphous silicon." Thin Solid Films 337, no. 1-2 (January 1999): 78–81. http://dx.doi.org/10.1016/s0040-6090(98)01389-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manfredotti, C. "Amorphous silicon prepared by low pressure chemical vapour deposition." Thin Solid Films 141, no. 2 (August 1986): 171–78. http://dx.doi.org/10.1016/0040-6090(86)90344-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, A., Pankaj Agarwal, Sachin Kumar, and B. Joshi. "Low-pressure Chemical Vapour Deposition of Silicon Nanoparticles:Synthesis and Characterisation." Defence Science Journal 58, no. 4 (July 25, 2008): 550–58. http://dx.doi.org/10.14429/dsj.58.1676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Habib, Sami S. "Growth of carbon nanotubes using low pressure chemical vapour deposition." International Journal of Nanoparticles 2, no. 1/2/3/4/5/6 (2009): 46. http://dx.doi.org/10.1504/ijnp.2009.028733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pastor, G., P. Tejedor, I. Jiménez, E. Domínguez, M. Torres, and J. V. García-Ramos. "Low pressure chemical vapour deposition amorphous silicon behaviour under annealing." Physica Status Solidi (a) 106, no. 1 (March 16, 1988): 11–16. http://dx.doi.org/10.1002/pssa.2211060102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burte, E. P., and N. Rausch. "Low pressure chemical vapour deposition of tantalum pentoxide thin layers." Journal of Non-Crystalline Solids 187 (July 1995): 425–29. http://dx.doi.org/10.1016/0022-3093(95)00219-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, B. B., K. Zhu, J. Feng, J. Y. Wu, R. W. Shao, K. Zheng, and Q. J. Cheng. "Low-pressure thermal chemical vapour deposition of molybdenum oxide nanorods." Journal of Alloys and Compounds 661 (March 2016): 66–71. http://dx.doi.org/10.1016/j.jallcom.2015.11.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jašek, Ondřej, Petr Synek, Lenka Zajíčková, Marek Eliáš, and Vít Kudrle. "Synthesis of Carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric Pressure." Journal of Electrical Engineering 61, no. 5 (September 1, 2010): 311–13. http://dx.doi.org/10.2478/v10187-011-0049-9.

Full text
Abstract:
Synthesis of Carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric PressureCarbon nanostructures present the leading field in nanotechnology research. A wide range of chemical and physical methods was used for carbon nanostructures synthesis including arc discharges, laser ablation and chemical vapour deposition. Plasma enhanced chemical vapour deposition (PECVD) with its application in modern microelectronics industry became soon target of research in carbon nanostructures synthesis. Selection of the ideal growth process depends on the application. Most of PECVD techniques work at low pressure requiring vacuum systems. However for industrial applications it would be desirable to work at atmospheric pressure. In this article carbon nanostructures synthesis by plasma discharges working at atmospheric pressure will be reviewed.
APA, Harvard, Vancouver, ISO, and other styles
10

Mahfoz-Kotb, H., A. C. Salaün, T. Mohammed-Brahim, F. Bendriaa, F. Le Bihan, and O. Bonnaud. "Silicon Films Deposited by Low-Pressure Chemical Vapour Deposition for Microsystems." Solid State Phenomena 93 (June 2003): 453–58. http://dx.doi.org/10.4028/www.scientific.net/ssp.93.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ecoffey, Serge, Didier Bouvet, Adrian M. Ionescu, and Pierre Fazan. "Low-pressure chemical vapour deposition of nanograin polysilicon ultra-thin films." Nanotechnology 13, no. 3 (May 24, 2002): 290–93. http://dx.doi.org/10.1088/0957-4484/13/3/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Heikkilä, L., T. Kuusela, H. P. Hedman, and H. Ihantola. "Electroluminescent SiO2/Si superlattices prepared by low pressure chemical vapour deposition." Applied Surface Science 133, no. 1-2 (May 1998): 84–88. http://dx.doi.org/10.1016/s0169-4332(98)00186-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hitchman, M. L. "Low pressure chemical vapour deposition—some considerations, some models, some insights." Vacuum 41, no. 4-6 (January 1990): 880–84. http://dx.doi.org/10.1016/0042-207x(90)93811-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ahmed, W., D. B. Meakin, J. Stoemenos, N. A. Economou, and R. D. Pilkington. "Ultra-low pressure chemical vapour deposition of polycrystalline and amorphous silicon." Journal of Materials Science 27, no. 2 (1992): 479–84. http://dx.doi.org/10.1007/bf00543941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vilotijevic, Miroljub, Nebojsa Grahovac, Ljiljana Milovanovic, and Slobodan Marinkovic. "Chemical vapour deposition of diamond using low pressure flat combustion flame." Journal of the Serbian Chemical Society 71, no. 2 (2006): 197–202. http://dx.doi.org/10.2298/jsc0602197v.

Full text
Abstract:
Diamond coatings were deposited onto Mo and WC-Co substrates using a low pressure premixed acetylene-oxygen flat flame by means of a special apparatus operating at 50 mbar. Uniform diamond coatings containing significant amounts of non-diamond carbon were deposited over areas of ?7 cm2 onto Mo substrates, the coating thickness after 1 h deposition amounted to ?1 ?m. Upon machining an Al-12 % Si alloy under identical conditions, the diamond coated WC-Co cutting tool inserts showed 30 % less wear than the as-received inserts.
APA, Harvard, Vancouver, ISO, and other styles
16

Shalini, K., Anil U. Mane, S. A. Shivashankar, M. Rajeswari, and S. Choopun. "Epitaxial growth of Co3O4 films by low temperature, low pressure chemical vapour deposition." Journal of Crystal Growth 231, no. 1-2 (September 2001): 242–47. http://dx.doi.org/10.1016/s0022-0248(01)01493-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ko¨rner, H. "Selective low pressure chemical vapour deposition of tungsten: Deposition kinetics, selectivity and film properties." Thin Solid Films 175 (August 1989): 55–60. http://dx.doi.org/10.1016/0040-6090(89)90808-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Meester, B., L. Reijnen, F. de Lange, A. Goossens, and J. Schoonman. "Low pressure chemical vapor deposition of CuxS." Le Journal de Physique IV 11, PR3 (August 2001): Pr3–239—Pr3–246. http://dx.doi.org/10.1051/jp4:2001330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lu, Jhy-Chang, and Feng-Sheng Wang. "Optimization of low pressure chemical vapour deposition reactors using hybrid differential evolution." Canadian Journal of Chemical Engineering 79, no. 2 (April 2001): 246–54. http://dx.doi.org/10.1002/cjce.5450790207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Iamraksa, P., N. S. Lloyd, and D. M. Bagnall. "Si/SiGe near-infrared photodetectors grown using low pressure chemical vapour deposition." Journal of Materials Science: Materials in Electronics 19, no. 2 (June 5, 2007): 179–82. http://dx.doi.org/10.1007/s10854-007-9299-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jones, A. C., J. Auld, S. A. Rushworth, and G. W. Critchlow. "Growth of aluminium films by low pressure chemical vapour deposition using tritertiarybutylaluminium." Journal of Crystal Growth 135, no. 1-2 (January 1994): 285–89. http://dx.doi.org/10.1016/0022-0248(94)90753-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ong, C. W., K. P. Chik, and H. K. Wong. "Properties of a-boron films prepared by low pressure chemical vapour deposition." Journal of Non-Crystalline Solids 114 (December 1989): 783–85. http://dx.doi.org/10.1016/0022-3093(89)90719-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Şovar, Maria Magdalena, Diane Samelor, Alain Gleizes, P. Alphonse, S. Perisanu, and C. Vahlas. "Protective Alumina Coatings by Low Temperature Metalorganic Chemical Vapour Deposition." Advanced Materials Research 23 (October 2007): 245–48. http://dx.doi.org/10.4028/www.scientific.net/amr.23.245.

Full text
Abstract:
Alumina thin films were processed by MOCVD from aluminium tri-iso-propoxide, with N2 as a carrier gas, occasional addition of water in the gas phase, deposition temperature in the range 350-700°C, total pressure 0.67 kPa (2 kPa when water was used). The films do not diffract Xray when prepared below 700°C. At 700°C, they start to crystallize as γ-alumina. EDS, EPMA, ERDA, RBS, FTIR and TGA revealed that films prepared in the range 350-415°C, without water in the gas phase, have an overall composition Al2O3-x(OH)2x, with x tending to 0 with increasing temperature. Al2O3 is obtained above 415°C. When water is added in the gas phase, the film composition is Al2O3, even below 415°C. Coatings deposited in these conditions show promising protection properties.
APA, Harvard, Vancouver, ISO, and other styles
24

Zambov, L. M., B. Ivanov, C. Popov, G. Georgiev, I. Stoyanov, and D. B. Dimitrov. "Characterization of low-dielectric constant SiOCN films synthesized by low pressure chemical vapour deposition." Le Journal de Physique IV 11, PR3 (August 2001): Pr3–1005—Pr3–1012. http://dx.doi.org/10.1051/jp4:20013126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

PONCE-PEDRAZA, A., J. CARRILLO-LOPEZ, and A. MORALES-ACEVEDO. "POOLE-FRENKEL ELECTRICAL CONDUCTION IN SILICON OXYNITRIDE DEPOSITED BY LOW PRESSURE CHEMICAL VAPOUR DEPOSITION." Modern Physics Letters B 15, no. 17n19 (August 20, 2001): 621–24. http://dx.doi.org/10.1142/s0217984901002142.

Full text
Abstract:
In this work LPCVD silicon oxynitride films of various compositions between SiO 2 and Si 3 N 4 were deposited by changing the relative ratio (Ro) of nitrous oxide to silane pressures, and the ratio (Rl) of silone to ammonia pressures, while keeping constant the silane pressure. The silicon oxynitride films were deposited at 700°C on p-type silicon substrates (with a carrier concentration of 1015 cm-3), varyng Ro from 0.5 to 2 and Rl from 2.5 to 10. The conduction characteristics of the silicon oxynitride films were studied by using current-voltage and capacitance-voltage measurements of MIS capacitors. Poole-Frenkel thermal emission is shown to be the dominant conduction mechanism in the films. In addition, it is shown that when the nitrous oxide to ammonia ratio increases from 1.25 to 20, i.e., as the oxygen concentration increases in the silicon oxynitride films, there seems to be an increase of charge compensation of the donors in the films.
APA, Harvard, Vancouver, ISO, and other styles
26

Awang, Rozidawati, Goh Boon Tong, Siti Meriam Ab. Gani, Richard Ritikos, and Saadah Abdul Rahman. "The Effects of Deposition Pressure on the Optical and Structural Properties of d.c. PECVD Hydrogenated Amorphous Carbon Films." Materials Science Forum 517 (June 2006): 81–84. http://dx.doi.org/10.4028/www.scientific.net/msf.517.81.

Full text
Abstract:
A direct-current plasma enhanced chemical vapour deposition (PECVD) system was designed and built in-house for the deposition of hydrogenated amorphous carbon(a-C:H) thin films. In this work, a-C:H thin films prepared using this system at different deposition pressures were studied. The influence of deposition pressure on the deposition rate, energy gap, bonded hydrogen content and structure of the film has been investigated. The characterization techniques were determined from optical transmission spectroscopy, Fourier transform infrared spectroscopy and Xray diffraction measurements. The results demonstrated that the deposition pressure had strong influence on the deposition rate, optical energy gap and the bonded H content in the film. Evidence of crystallinity was observed in films prepared at low deposition pressure.
APA, Harvard, Vancouver, ISO, and other styles
27

Chimupala, Yothin, Geoffrey Hyett, Robert Simpson, Robert Mitchell, Richard Douthwaite, Steven J. Milne, and Richard D. Brydson. "Synthesis and characterization of mixed phase anatase TiO2 and sodium-doped TiO2(B) thin films by low pressure chemical vapour deposition (LPCVD)." RSC Adv. 4, no. 89 (2014): 48507–15. http://dx.doi.org/10.1039/c4ra07570f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Olivier, A., H. Wang, A. Koke, and D. Baillargeat. "Gallium nitride nanowires grown by low pressure chemical vapour deposition on silicon substrate." International Journal of Nanotechnology 11, no. 1/2/3/4 (2014): 243. http://dx.doi.org/10.1504/ijnt.2014.059826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Armas, B., M. de Icaza Herrera, C. Combescure, F. Sibieude, and D. Thenegal. "Low-pressure chemical vapour deposition of mullite coatings in a cold-wall reactor." Le Journal de Physique IV 09, PR8 (September 1999): Pr8–395—Pr8–402. http://dx.doi.org/10.1051/jp4:1999849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lloyd, N. S., and J. M. Bonar. "Low-pressure chemical vapour deposition growth of epitaxial silicon selective to silicon nitride." Materials Science and Engineering: B 89, no. 1-3 (February 2002): 310–13. http://dx.doi.org/10.1016/s0921-5107(01)00805-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Armas, B., F. Sibieude, A. Mazel, R. Fourmeaux, and M. de Icaza Herrera. "Low-pressure chemical vapour deposition of mullite layers using a cold-wall reactor." Surface and Coatings Technology 141, no. 1 (June 2001): 88–95. http://dx.doi.org/10.1016/s0257-8972(01)01132-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Haanappel, V. A. C., H. D. van Corbach, T. Fransen, and P. J. Gellings. "Properties of alumina films prepared by low-pressure metal-organic chemical vapour deposition." Surface and Coatings Technology 72, no. 1-2 (May 1995): 13–22. http://dx.doi.org/10.1016/0257-8972(94)02328-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Itatani, K., K. Sano, F. S. Howell, A. Kishioka, and M. Kinoshita. "Some properties of aluminium nitride powder synthesized by low-pressure chemical vapour deposition." Journal of Materials Science 28, no. 6 (January 1, 1993): 1631–38. http://dx.doi.org/10.1007/bf00363359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Roman, Y. G., and A. P. M. Adriaansen. "Aluminium nitride films made by low pressure chemical vapour deposition: Preparation and properties." Thin Solid Films 169, no. 2 (February 1989): 241–48. http://dx.doi.org/10.1016/0040-6090(89)90707-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bielle-Daspet, D., F. Mansour-Bahloul, A. Martinez, B. Pieraggi, M. J. David, B. De Mauduit, A. Oustry, et al. "Microstructure of boron-doped silicon layers prepared by low pressure chemical vapour deposition." Thin Solid Films 150, no. 1 (June 1987): 69–82. http://dx.doi.org/10.1016/0040-6090(87)90309-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Loo, R., L. Vescan, D. Behammer, J. Moers, T. Grabolla, W. Langen, D. Klaes, U. Zastrow, P. Kordos, and H. Lüth. "Vertical Si p-MOS transistor selectively grown by low pressure chemical vapour deposition." Thin Solid Films 294, no. 1-2 (February 1997): 267–70. http://dx.doi.org/10.1016/s0040-6090(96)09464-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Behrens, Ingo, Erwin Peiner, Andrey S. Bakin, and Andreas Schlachetzki. "Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapour deposition." Journal of Micromechanics and Microengineering 12, no. 4 (June 14, 2002): 380–84. http://dx.doi.org/10.1088/0960-1317/12/4/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Feng, S. L., J. C. Bourgoin, and M. Razeghi. "Defects in high purity GaAs grown by low pressure metalorganic chemical vapour deposition." Semiconductor Science and Technology 6, no. 3 (March 1, 1991): 229–30. http://dx.doi.org/10.1088/0268-1242/6/3/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Williams, D. S., E. Coleman, and J. M. Brown. "Low Pressure Chemical Vapor Deposition of Tantalum Silicide." Journal of The Electrochemical Society 133, no. 12 (December 1, 1986): 2637–44. http://dx.doi.org/10.1149/1.2108494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tedrow, P. K., V. Ilderem, and R. Reif. "Low pressure chemical vapor deposition of titanium silicide." Applied Physics Letters 46, no. 2 (January 15, 1985): 189–91. http://dx.doi.org/10.1063/1.95679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Reynolds, Glyn J. "Low Pressure Chemical Vapor Deposition of Tantalum Silicide." Journal of The Electrochemical Society 135, no. 6 (June 1, 1988): 1483–90. http://dx.doi.org/10.1149/1.2096040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Freeman, Dean W. "Thin‐gate low‐pressure chemical vapor deposition oxides." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (July 1987): 1554–58. http://dx.doi.org/10.1116/1.574563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Blackman, Christopher S., Claire J. Carmalt, Troy D. Manning, Ivan P. Parkin, Leonardo Apostolico, and Kieran C. Molloy. "Low temperature deposition of crystalline chromium phosphide films using dual-source atmospheric pressure chemical vapour deposition." Applied Surface Science 233, no. 1-4 (June 2004): 24–28. http://dx.doi.org/10.1016/j.apsusc.2004.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hewitt, S. B., S. P. Tay, N. G. Tarr, and A. R. Boothroyd. "Silicon carbide emitter diodes by LPCVD (low-pressure chemical vapour deposition) using di-tert-butylsilane." Canadian Journal of Physics 70, no. 10-11 (October 1, 1992): 946–48. http://dx.doi.org/10.1139/p92-151.

Full text
Abstract:
Stoichiometric SiC films formed by low-pressure chemical vapour deposition from a di-tert-butylsilane source with in situ phosphorus doping from tert-butylphosphine were used as emitters in heterojunction diodes fabricated on lightly doped silicon substrates. Diode characteristics are nearly ideal, with forward current dominated by injection-diffusion in the silicon substrate.
APA, Harvard, Vancouver, ISO, and other styles
45

Rahman, S. A., M. Z. Othman, and P. W. May. "Raman and Photoluminescence Spectroscopy of Nanocrystalline Diamond Films Grown by Hot Filament CVD." Advanced Materials Research 501 (April 2012): 271–75. http://dx.doi.org/10.4028/www.scientific.net/amr.501.271.

Full text
Abstract:
Nanocrystalline diamond films were grown by hot filament chemical vapour deposition (HFCVD) in a mixture of methane and hydrogen gases. Three straight parallel wires filament configuration were used in the HFCVD system for the deposition of the films studied in this work. The deposition pressure for the growth of diamond films in this hot filament chemical vapour deposition (HFCVD) reactor have been optimized to be at 20 torr with the methane and hydrogen flow-rates fixed at 2 and 200 sccm respectively. The films studied in this work were grown at low deposition pressures of 2 and 5 torr using the same gas flow-rates used for the optimized diamond film growth including an additional film grown at pressure of 5 mbar with the methane flow-rate reduced to 1 sccm. The morphology showed the formation of closed packed diamond grains for the film grown at 5 torr with methane and hydrogen flow-rates fixed at 2 and 200 sccm. Decrease in pressure and methane flow-rate produced significant changes to the morphology of the diamond grains formed. X-ray diffraction showed that diamond phase phases were dominant in the films deposited at higher pressure. Raman and photoluminescence (PL) spectral analysis were performed using spectra acquired at 325 and 514 nm excitation energies. Raman analysis revealed that increase in deposition pressure from 2 to 5 Torr resulted in the transformation of the film structure from diamond-like-carbon to nanocrystalline diamond structure. UV excitation produced high PL emission intensity at 2.1 eV and the PL intensity was highest for the films deposited at the lowest pressure. Visible excitation on the other hand produced low intensity broad PL emission for all the films between 1.2 and 2.5 eV and the PL intensity was high for the films deposited at the highest deposition pressure.
APA, Harvard, Vancouver, ISO, and other styles
46

Hoff, H. A., A. A. Morrish, J. E. Butler, and B. B. Rath. "Comparative fractography of chemical vapor and combustion deposited diamond films." Journal of Materials Research 5, no. 11 (November 1990): 2572–88. http://dx.doi.org/10.1557/jmr.1990.2572.

Full text
Abstract:
Polycrystalline diamond films of several thicknesses have been fractured by manual bending and examined by scanning electron microscopy. These films have been deposited in controlled environments at low pressures by chemical vapor deposition and in ambient atmosphere with an oxygen-acetylene torch. Fracture surfaces in the low pressure depositions exhibit cleavage steps across the grains. These surfaces, independent of thickness, are primarily transgranular, attesting to the inherent strength of the deposits. However, the ambient deposited diamond has primarily intergranular fracture indicative of weak grain boundaries. Internal defects, observed with transmission electron microscopy, such as twins, stacking faults, and dislocations, occur generally in both types of deposition with no apparent preference for location or type of deposition.
APA, Harvard, Vancouver, ISO, and other styles
47

Meakin, D., P. Migliorato, J. Stoemenos, and N. A. Economou. "The growth of polycrystalline silicon films by low pressure chemical vapour deposition at relatively low temperatures." Thin Solid Films 163 (September 1988): 249–54. http://dx.doi.org/10.1016/0040-6090(88)90431-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yoshikawa, A., S. Yamaga, K. Tanaka, and H. Kasai. "Growth of low-resistivity high-quality ZnSe, ZnS films by low-pressure metalorganic chemical vapour deposition." Journal of Crystal Growth 72, no. 1-2 (July 1985): 13–16. http://dx.doi.org/10.1016/0022-0248(85)90110-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Scheid, E., L. K. Kouassi, R. Henda, J. Samitier, and J. R. Morante. "Silicon nitride elaborated by low pressure chemical vapour deposition from Si2H6 and NH3 at low temperature." Materials Science and Engineering: B 17, no. 1-3 (February 1993): 185–89. http://dx.doi.org/10.1016/0921-5107(93)90103-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

He, A. Q., A. H. Heuer, and H. Kahn. "Homogeneous nucleation during crystallization of amorphous silicon produced by low-pressure chemical vapour deposition." Philosophical Magazine A 82, no. 1 (January 10, 2002): 137–65. http://dx.doi.org/10.1080/01418610110067734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography