Academic literature on the topic 'Low Power Wide Area'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low Power Wide Area.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Low Power Wide Area"

1

Raza, Usman, Parag Kulkarni, and Mahesh Sooriyabandara. "Low Power Wide Area Networks: An Overview." IEEE Communications Surveys & Tutorials 19, no. 2 (2017): 855–73. http://dx.doi.org/10.1109/comst.2017.2652320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thubert, Pascal, Alexander Pelov, and Suresh Krishnan. "Low-Power Wide-Area Networks at the IETF." IEEE Communications Standards Magazine 1, no. 1 (March 2017): 76–79. http://dx.doi.org/10.1109/mcomstd.2017.1600002st.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qin, Zhijin, Frank Y. Li, Geoffrey Ye Li, Julie A. McCann, and Qiang Ni. "Low-Power Wide-Area Networks for Sustainable IoT." IEEE Wireless Communications 26, no. 3 (June 2019): 140–45. http://dx.doi.org/10.1109/mwc.2018.1800264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saifullah, Abusayeed, Mahbubur Rahman, Dali Ismail, Chenyang Lu, Jie Liu, and Ranveer Chandra. "Low-Power Wide-Area Network Over White Spaces." IEEE/ACM Transactions on Networking 26, no. 4 (August 2018): 1893–906. http://dx.doi.org/10.1109/tnet.2018.2856197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, Fei, Jianwei Niu, Landu Jiang, Xue Liu, and Mohammed Atiquzzaman. "Survey of the low power wide area network technologies." Journal of Network and Computer Applications 149 (January 2020): 102459. http://dx.doi.org/10.1016/j.jnca.2019.102459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Georgiou, Orestis, and Usman Raza. "Low Power Wide Area Network Analysis: Can LoRa Scale?" IEEE Wireless Communications Letters 6, no. 2 (April 2017): 162–65. http://dx.doi.org/10.1109/lwc.2016.2647247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arsalan Jawed, Syed, Waqar Ahmed Qureshi, Atia Shafique, Junaid Ali Qureshi, Abdul Hameed, and Moaaz Ahmed. "Low-power area-efficient wide-range robust CMOS temperature sensors." Microelectronics Journal 44, no. 2 (February 2013): 119–27. http://dx.doi.org/10.1016/j.mejo.2012.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moons, Bart, Abdulkadir Karaagac, Eli De Poorter, and Jeroen Hoebeke. "Efficient Vertical Handover in Heterogeneous Low-Power Wide-Area Networks." IEEE Internet of Things Journal 7, no. 3 (March 2020): 1960–73. http://dx.doi.org/10.1109/jiot.2019.2961950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jiang, Xiaofan, Heng Zhang, Edgardo Alberto Barsallo Yi, Nithin Raghunathan, Charilaos Mousoulis, Somali Chaterji, Dimitrios Peroulis, Ali Shakouri, and Saurabh Bagchi. "Hybrid Low-Power Wide-Area Mesh Network for IoT Applications." IEEE Internet of Things Journal 8, no. 2 (January 15, 2021): 901–15. http://dx.doi.org/10.1109/jiot.2020.3009228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, James, and Sasan Adibi. "Bushfire Disaster Monitoring System Using Low Power Wide Area Networks (LPWAN)." Technologies 5, no. 4 (October 8, 2017): 65. http://dx.doi.org/10.3390/technologies5040065.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Low Power Wide Area"

1

Orfanidis, Charalampos. "Robustness in low power wide area networks." Licentiate thesis, Uppsala universitet, Avdelningen för datorteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351481.

Full text
Abstract:
During the past few years we have witnessed an emergence of Wide Area Networks in the Internet of Things area. There are several new technologies like LoRa, Wi-SUN, Sigfox, that offer long range communication and low power for low-bitrate applications. These new technologies enable new application scenarios, such as smart cities, smart agriculture, and many more. However, when these networks co-exist in the same frequency band, they may cause problems to each other since they are heterogeneous and independent. Therefore it is very likely to have frame collisions between the different networks. In this thesis we first explore how tolerant these networks are to Cross Technology Interference (CTI). CTI can be described as the interference from heterogeneous wireless technologies that share the same frequency band and is able to affect the robustness and reliability of the network. In particular, we select two of them, LoRa and Wi-SUN and carry out a series of experiments with real hardware using several configurations. In this way, we quantify the tolerance of cross technology interference of each network against the other as well as which configuration settings are important. The next thing we explored is how well channel sensing mechanisms can detect the other network technologies and how they can be improved. For exploring these aspects, we used the default Clear Channel Assessment (CCA) mechanism of Wi-SUN against LoRa interference and we evaluated how accurate it is. We also improved this mechanism in order to have higher accuracy detection against LoRa interference. Finally, we propose an architecture for WSNs which will enable flexible reconfiguration of the nodes. The idea is based on Software Defined Network (SDN) principles and could help on our case by reconfiguring a node in order to mitigate the cross-technology interference from other networks.
APA, Harvard, Vancouver, ISO, and other styles
2

Kidane, Berhane. "Low Power Wide Area Networks based on LoRA Technology." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
The demand for connected devices, according to the Internet of Things (IoT) paradigm, is expected to grow considerably in the immediate future. Various standards are currently contending to gain an edge over the competition and provide the massive connectivity that will be required by a world in which everyday objects are expected to communicate with each other. Among these standards, Low-Power Wide Area Networks (LPWANs) are continuously gaining momentum, mainly thanks to their ability to provide long-range coverage to devices, exploiting license-free frequency bands. The focus of this thesis is on one of the most prominent LPWAN technologies: LoRa™. First, this thesis establishes a series of models that cover various aspects of a LoRa network. Then, a new Network LoRaWAN Simulator is introduced to simulate a LoRa-based IoT network of four use cases. Finally, the performance of the LoRa system is evaluated and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Yang. "Design of wide-area damping control systems for power system low-frequency inter-area oscillations." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Fall2007/y_zhang_112007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wunsch, Felix [Verfasser]. "Drahtloses Low Power Wide Area Network bei 2,4 GHz / Felix Wunsch." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1205001980/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ortis, Pasamontes Enrique. "Comparison Study and Product Development using Wireless Narrowband Low-power Wide-area Network Technologies." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227857.

Full text
Abstract:
Nowadays it is more clear that the Internet of things (IoT) is not a transient trend but a completely new industry. The internet of things has the capability to enhance current industries (Industry 4.0), as well as to help protecting the environment and people. The latter is the case with the system developed and described in this thesis. The possibilities that IoT brings are due to the interconnection of heterogeneous embedded devices to the internet. This thesis focus on LPWANs (Low Power Wide Area Networks), which is a new set of technologies specifically design for the needs of IoT devices.Due to the recent deploy of NB-IoT (Narrow Band IoT) networks it has become more difficult to know what LPWAN is best for a certain application. Thus, the first half of this thesis involves the comparative study of NB-IoT and LoRaWAN LPWANs. This comparison required an in depth study of each technology, specially on the physical and datalink layers. The comparison briefly displays the main characteristics of each technology and explain the main conclusions in a concise manner. The second part of the thesis describes the development of a GNSS tracker. This tracker will be used on train wagons carrying goods that are dangerous for people and the environment. This thesis report describes the different steps taken, from the requirement specification to the partial development of the software.
APA, Harvard, Vancouver, ISO, and other styles
6

Khalil, O. (Omar). "A use case of low power wide area networks in future 5G healthcare applications." Master's thesis, University of Oulu, 2018. http://jultika.oulu.fi/Record/nbnfioulu-201806022427.

Full text
Abstract:
Abstract. The trend in all cellular evolution to the Long-Term Evolution (LTE) has always been to offer users continuously increasing data rates. However, the next leap forwards towards the 5th Generation Mobile Networks (5G) will be mainly addressing the needs of devices. Machines communicating with each other, sensors reporting to a server, or even machines communicating with humans, these are all different aspects of the same technology; the Internet of Things (IoT). The key differentiator between Machine-to-Machine (M2M) communications and IoT will be the added -feature of connecting devices and sensors not only to themselves, but also to the internet. The appropriate communications network is the key to allow this connectivity. Local Area Networks (LANs) and Wide Area Networks (WANs) have been thought of as enablers for IoT, but since they both suffered from limitations in IoT aspects, the need for a new enabling technology was evident. LPWANs are networks dedicated to catering for the needs of IoT such as providing low energy consumption for wireless devices. LPWANs can be categorized into proprietary LPWANs and cellular LPWANs. Proprietary LPWANs are created by an alliance of companies working together on creating a communications standard operating in unlicensed frequency bands. An example of proprietary LPWANs is LoRa. Whereas cellular LPWANs are standardized by the 3rd Partnership Project (3GPP) and they are basically versions of the LTE standard especially designed for machine communications. An example of cellular LPWANs is Narrowband IoT (NB IoT). This diploma thesis documents the usage of LoRa and NB IoT in a healthcare use case of IoT. It describes the steps and challenges of deploying an LTE network at a target site, which will be used by the LoRa and NB IoT sensors to transmit data through the 5G test network (5GTN) to a desired server location for storing and later analysis.Matalan tehonkulutuksen ja pitkänkantaman teknologian käyttötapaus tulevaisuuden 5G:tä hyödyntävissä terveydenhoidon sovelluksissa. Tiivistelmä. Pitemmän aikavälin tarkastelussa matkaviestintäteknologian kehittyminen nykyisin käytössä olevaan Long-Term Evolution (LTE) teknologiaan on tarkoittanut käyttäjille yhä suurempia datanopeuksia. Seuraavassa askeleessa kohti 5. sukupolven matkaviestintäverkkoja (5G) lähestytään kehitystä myös laitteiden tarpeiden lähtökohdista. Toistensa kanssa kommunikoivat koneet, palvelimille dataa lähettävät anturit tai jopa ihmisten kanssa kommunikoivat koneet ovat kaikki eri puolia samasta teknologisesta käsitteestä; esineiden internetistä (IoT). Oleellisin ero koneiden välisessä kommunikoinnissa (M2M) ja IoT:ssä on, että erinäiset laitteet tulevat olemaan yhdistettyinä paitsi toisiinsa myös internettiin. Tätä kytkentäisyyttä varten tarvitaan tarkoitukseen kehitetty matkaviestinverkko. Sekä lähiverkkoja (LAN) että suuralueverkkoja (WAN) on pidetty mahdollisina IoT mahdollistajina, mutta näiden molempien käsitteiden alle kuuluvissa teknologioissa on rajoitteita IoT:n vaatimusten lähtökohdista, joten uuden teknologian kehittäminen oli tarpeellista. Matalan tehonkulutuksen suuralueverkko (LP-WAN) on käsite, johon luokitellaan eri teknologioita, joita on kehitetty erityisesti IoT:n tarpeista lähtien. LP-WAN voidaan jaotella ainakin itse kehitettyihin ja matkaviestinverkkoihin perustuviin teknologisiin ratkaisuihin. Itse kehitetyt ratkaisut on luotu lukuisten yritysten yhteenliittymissä eli alliansseissa ja nämä ratkaisut keskittyvät lisensoimattomilla taajuuksilla toimiviin langattomiin ratkaisuihin, joista esimerkkinä laajasti käytössä oleva LoRa. Matkaviestinverkkoihin perustuvat lisensoiduilla taajuuksilla toimivat ratkaisut on puolestaan erikseen standardoitu 3GPP-nimisessä yhteenliittymässä, joka nykyisellään vastaa 2G, 3G ja LTE:n standardoiduista päätöksistä. Esimerkki 3GPP:n alaisesta LPWAN-luokkaan kuuluvasta teknologiasta on kapea kaistainen IoT-teknologia, NB-IoT. Tässä diplomityössä keskitytään terveydenhoidon käyttötapaukseen, missä antureiden mittaamaa tietoa siirretään langattomasti käyttäen sekä LoRa että NB-IoT teknologioita. Työssä kuvataan eri vaiheet ja haasteet, joita liittyi kun rakennetaan erikseen tiettyyn kohteeseen LTE-verkon radiopeitto, jotta LoRa:a ja NB-IoT:a käyttävät anturit saadaan välittämään mitattua dataa halutulle palvelimelle säilytykseen ja myöhempää analysointia varten. LTE-radiopeiton rakensi Oulun yliopiston omistama 5G testiverkko, jonka tarkoitus on tukea sekä tutkimusta että ympäröivää ekosysteemiä tulevaisuuden 5G:n kehityksessä.
APA, Harvard, Vancouver, ISO, and other styles
7

Sjöström, Daniel. "Unlicensed and licensed low-power wide area networks : Exploring the candidates for massive IoT." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214941.

Full text
Abstract:
In the Internet of things (IoT), many applications will require low-power and low-cost to achieve long lifetime and scale (respectively). These types of applications are referred to as massive IoT, as opposed to critical IoT, which emphasizes ultra-high reliability and availability and low latency. One type of network catering to massive IoT applications are Low-Power Wide Area Networks (LPWANs), and presently, many LPWAN standards are trying to assert their role in the IoT ecosystem. This thesis explores LPWANs from both technical and non-technical perspectives to ascertain their use-case versatility and influence on the future telecommunications’ landscape. With respect to spectrum, the studied LPWANs may be categorized as unlicensed LPWAN or licensed LPWAN. The prior category typically refers to proprietary solutions and in this thesis are represented by SigFox and LoRaWAN. The latter group includes EC-GSM-IoT, eMTC, and NB-IoT and can be considered synonymous with cellular LPWAN because they are designed to be integrated into existing cellular infrastructures. The results indicate that all of the different types of explored LPWANs support applications without strict downlink, payload size, and latency requirements. For use cases without these specific demands (typically sensors, meters, tracking, etc.), it is not a question of whether or not a network fulfills the requirements, but rather how flexible the requirements are. As a result the choice of network will be determined by non-technical aspects and a cost versus functionality trade-off where unlicensed LPWAN is typically cheaper. Hence, both categories of LPWANs offer a unique value proposition; therefore, they can be considered complementary. This notion is reinforced when looking at non-technical aspects such as ecosystem, regulation, network ownership and control, and network coordination, which differ quite significantly. Furthermore, unlicensed LPWANs are likely to be the vanguard of a new type of competitor offering the core service of connectivity.
Inom Internet of Things (IoT) kommer många applikationer att kräva låg effekt och låg kostnad för att uppnå en lång livstid och skala. Dessa typer av applikationer refereras till som massiv IoT, vilket står i motsats till kritisk IoT som kräver ultrahög tillförlitlighet och tillgänglighet och låg fördröjning. En typ av nätverk som ämnar tillgodose kraven av massiv IoT är Low-Power Wide Area Networks (LPWANs), och idag försöker många av dessa hävda sig inom IoT ekosystemet. Detta examensarbete undersöker LPWANs from ett teknisk och icke-tekniskt perspektiv för att utröna deras mångsidighet och påverkan på det framtida telekomlandskapet. Med avseende på spektrum kan de i detta examensarbete undersökta nätverken kategoriseras som olicensierat LPWAN eller licensierat LPWAN. Den tidigare hänvisar typiskt till proprietära lösningar och representeras i detta arbete av SigFox och LoRaWAN. Den senare kategorin består av EC-GSM-IoT, eMTC, och NB-IoT och kan betraktas som synonymt med mobil LPWAN eftersom de designade för att bli integrerade i existerande mobila nätverk. Resultaten indikerar att alla nätverk stödjer applikationer utan strikta krav när det gäller nedlänkens funktionalitet, mängden data per meddelande, och fördröjning. För applikationer utan dessa specifika krav (typiskt sensorer, mätare, spårning, etc.) är det inte en fråga om huruvida ett nätverk uppfyller kraven eller ej, utan snarare hur flexibla kraven är. Därför kommer valet av nätverk att bestämmas av icke-tekniska aspekter och en avvägning mellan kostnad och funktionalitet vari olicensierat LPWAN är vanligtvis billigare. Därmed erbjuder båda kategorier av nätverk en unik värde proposition och kan därför betraktas som komplementerande. Denna föreställning är förstärkt av att nätverken skiljer sig signifikant när det gäller deras icke-tekniska aspekter såsom ekosystem, reglering, ägandeskap och kontroll, och nätverks koordinering. Dessutom är olicensierade LPWANs troligen är förtruppen av en ny typ av konkurrent som erbjuder den grundläggande servicen av konnektivitet.
APA, Harvard, Vancouver, ISO, and other styles
8

Eriksen, Rúni. "Energy Consumption of Low Power Wide Area Network Node Devices in the Industrial, Scientific and Medical Band." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259508.

Full text
Abstract:
Low-Power Wide-Area Networks, LPWANs, achieve long communication ranges with a low energy consumption by communicating at low bit rates. Most LPWAN devices are battery powered and are required to operate for an extended period of time, which stresses the requirements for energy efficiency. This thesis investigates the energy consumption of LPWAN devices operating in the Industrial, Scientific and Medical, ISM, band and how use cases affect the consumption. Specifically, LoRa/LoRaWAN and Sigfox are examined. Their key characteristics are described and energy consumption is modelled. The models are verified by comparing the model outputs with measured power consumption of LoRa and Sigfox devices. Through the models, design parameters are investigated with regards to consumption, and product lifetime are estimated. The influence of use cases on energy consumption is explored by measuring the Package Delivery Ratio, PDR, at different ranges using various bit transmission rates.The results showed that the bitrate, data redundancy and protocol overhead were among parameters which could be used to optimise energy efficiency. It was also shown, that the device lifetimes could be significantly increased by increasing the transmission interval and removing message acknowledgements. Realistically, LoRa devices can have a lifetime of more than 10 years and Sigfox 3 years, using a 2800 mWh battery. The use case tests showed that a 100 % PDR should not be expected at any bitrate, but lower bitrates and messaging redundancy increase the likelihood of a successful package delivery. Hence, there is a tradeoff between low energy consumption and range/reliability. Additionally, it was found that a low node to gateway distance and a high gateway density increase the probability of a successful transaction. Thus, the power consumption is tightly coupled to the network configuration.
Low-Power Wide-Area Networks, LPWANs, uppnår långa kommunikationsräckvidder med låg energiförbrukning genom att kommunicera med låga bithastigheter. De flesta enheter är batteridrivna och måste operera över längre tid, vilket ökar kraven för energieffektivitet. Denna avhandling undersöker energiförbrukningen för LPWAN enheter i det industriella, vetenskapliga och medicinska ISM bandet och hur olika användningsfall påverkar förbrukningen. Specifikt undersöks LoRa/LoRaWAN och Sigfox. Deras viktigaste egenskaper beskrivs och deras energiförbrukning modelleras. Modellerna verifieras genom att jämföra resultaten från modellerna med uppmätt effektförbrukning av LoRa och Sigfox-enheter. Genom modellerna undersöks även designparametrar med avseende på strömkonsumtion och produktens livslängd uppskattas. Påverkan användningsfall har på energiförbrukning undersöks genom att mäta Package Delivery Ratio, PDR, vid olika avstånd och bitöverföringshastigheter.Resultaten visade att bitraten, dataredundansen och protokollstorleken var bland parametrar som kunde användas för att optimera energieffektiviteten. Det visades också att enhetens livslängd kunde ökas signifikant genom att öka överföringsintervallet och ta bort meddelandebekräftelser. Realistiskt kan LoRaenheter ha en livslängd på mer än 10 år och Sigfox 3 år, med ett batteri på 2800 mWh. Resultatet av olika test visade att en 100 % PDR inte bör förväntas vid någon bitrate, men lägre bitrater och redundans för meddelanden ökar sannolikheten för en paketleverans. Det finns därför en avvägning mellan låg energiförbrukning och räckvidd och sannolikheten för en lyckad packetleverans. Dessutom konstaterades att en låg nod till gateway-avstånd och en hög gateway-densitet ökar sannolikheten för att transaktioner lyckas. Således är energiförbrukningen tätt kopplad till nätverkskonfigurationen.
APA, Harvard, Vancouver, ISO, and other styles
9

PETTER, LAGUSSON, and NORDLÖF JOHANNA. "A Study of Low-Power Wide-Area Networks and an In-Depth Study of the LoRaWAN Standard." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214595.

Full text
Abstract:
Low Power Wide Area Networks (LPWAN) are able to combine long range communication with a low energy consumption sacrificing performance in terms of bit rate and message frequency. This thesis presents a general evaluation of the LPWAN characteristics and a description of the LPWAN protocols LoRaWAN, SigFox and NB-IoT. It also covers a method to evaluate if a LPWAN technology would be a suitable choice of communication technology for a certain use case. Lastly, it covers the implementation of LoRaWAN on a connected electromechanical lock and investigates in the real life performance of the lock by using eight nodes in two case studies involving four locations each. The lock was evaluated from how often it was able to send a heartbeat (a status message), how reliable the communication was, what latency a user could expect and how much energy a data transmission required. Two of the eight nodes were placed in a deep indoor environment. One of them, located 0.794 km from a gateway was able transmit every 150th second. The other one located 1.85 km from a gateway was not able to successfully deliver any packets at all. Five nodes were able to transmit most heartbeats within 10 seconds. The Packet Delivery Ratio (PDR) was below 90% for all locations except for one. In this location, the node was placed close to a large window and managed to communicate with a gateway 3.22 km away with a PDR of 97% and almost exclusively with less than 10 seconds between transmission. The results in this thesis show the potential in LoRaWAN but highlights how dependent the performance will be of the placement of the lock.
Genom att kombinera låg dataöverföringshastighet och låg meddelandefrekvens kan LPWAN uppnå en kommunikation med lång räckvidd och låg energiförbrukning. Denna uppsats går igenom vad som karaktäriserar LPWAN i stort samt presenterar LPWAN-protokollen LoRaWAN, SigFox och NB-IoT. Den visar även en metod vilken kan användas för att utvärdera hur väl ett use case lämpar sig för LPWAN-tekniken. Slutligen görs en implementering av LoRaWAN i ett uppkopplat lås från ASSA ABLOY för att undersöka vilken prestanda som är möjlig att uppnå för åtta olika noder i två olika fallstudier. Låset utvärderades utfirån hur ofta det kunde skicka statusmeddelanden, hur tillförlitlig kommunikationen var samt hur mycket energi som förbrukades. Två av åtta noder placera-des långt in i sina respektive byggnader, den ena kunde endast skicka statusuppdateringar i intervaller om 150 sekunder och den andra lyckades inte leverera några datapaket alls. Fem noder lyckades skicka de flesta statusuppdateringerna i intervall under tio sekunder. Resultatet visade på en packet delivery ratio under 90% i samtliga fall förutom ett. Där placerades noden nära ett stort fönster och lyckades kommunicera med en gateway 3.22 km bort med en PDR på 97% och mindre än 10 sekunder mellan sändningarna. Detta resultat visar potentialen för LoRaWAN men belyser även hur beroende prestandan kommer att vara av hur låset placeras.
APA, Harvard, Vancouver, ISO, and other styles
10

Gilbert, Johann. "Étude et développement d'un réseau de capteurs synchronisés à l'aide d'un protocole de communication sans fil dédié à l'Internet des objets." Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0012/document.

Full text
Abstract:
Depuis les 20 dernières années, l'essor de l'IoT et du "cloud computing" a conditionné le besoin dedéployer massivement, et globalement, des capteurs afin d'alimenter des bases de données et améliorerla précision des algorithmes d'analyse. Pour répondre à ces demandes, de nouveaux réseaux basés surles bandes de fréquences ISM ont été déployés. Nous avons donc appréhendé de façon complète cestechnologies afin de garantir une qualité maximale pour nos produits mais aussi proposer des conseilsjustes dans un secteur ou abus de langage et promesses de performances sont monnaie courante.Cependant, le nombre grandissant d'objets émettant sous la fréquence du gigahertz lève un doutequant à l'impact sur la santé des êtres vivants. Dès lors, coupler l'aspect non invasif des VLC avecl'Internet des Objets permettrait non seulement de réduire les risques pour les êtres humains maisaussi de limiter la saturation des bandes radio.Néanmoins, les techniques d'aujourd'hui consistent principalement en la réalisation de systèmesdiffusant l'information depuis une source unique vers plusieurs récepteurs, ce qui est l'inverse du paradigmede l'IoT. Dans cette étude, nous avons donc réalisé un nouveau design basé sur les VLC qui meten place une topologie de réseau en étoile 3. Ce système, basé sur un concentrateur disposant d'une ouplusieurs caméra en guise de photo-récepteurs, est optimisé pour plus d'autonomie. Ainsi, la vitessede transmission peut être gérée dynamiquement sans être connue par les autres éléments du système
In the last 20 years, the coming up of Internet of Things and Cloud Computing has conditionedthe need to deploy sensors everywhere to feed databases and analytics. To meet this requirements,new kind of networks have been massively deployed based on the sub-gigahertz frequency which haveunknown effect on human health.Couple the non-invasive aspect of the Visible Light Communication (VLC) with IoT could notonly reduce potential risks for human health but also avoid radio band saturation. However, today'stechniques consist mainly in broadcast data from light sources to receivers which is the opposite of theIoT paradigm. In this study, we will present a new design where the gateway is not a classic photodiodebut a camera.With this camera based method, we are able to design a star network using VLC. Even if the datarate is not the same as standard method, we are now able to collect data emanating from many sensorsat once with only one photoreceptor. This system also includes the ability of discriminate LED matrix,which transfer the same data faster, and single LED. Finally, data rate can be handle autonomouslyby the system to provide an optimal data transfer
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Low Power Wide Area"

1

Haes Alhelou, Hassan, Almoataz Y. Abdelaziz, and Pierluigi Siano, eds. Wide Area Power Systems Stability, Protection, and Security. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54275-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Jing. Power System Wide-Area Stability Analysis and Control. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2018. http://dx.doi.org/10.1002/9781119304852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Masuch, Jens, and Manuel Delgado-Restituto. Ultra Low Power Transceiver for Wireless Body Area Networks. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00098-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masuch, Jens. Ultra Low Power Transceiver for Wireless Body Area Networks. Heidelberg: Springer International Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fouto, David, and Nuno Paulino. Design of Low Power and Low Area Passive Sigma Delta Modulators for Audio Applications. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57033-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kikō, Nihon Bōeki Shinkō. Operation and management model demonstration project for hydropower plants in a wide-area maintenance system with the aim of expansion to the Mekong Region. [Tokyo]: Japan External Trade Organization, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. Congress. House. Committee on the Judiciary. Amending Title 17, United States Code, to clarify the definition of the local service area of a primary transmitter in the case of a low power television station: Report (to accompany H.R. 3108) (including cost estimate of the Congressional Budget Office). [Washington, D.C.?: U.S. G.P.O., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davis, Frederic E. Desktop publishing. Edited by Barry John A, Wiesenberg Michael, and Langfeldt Eva. Homewood, Ill: Dow Jones-Irwin, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

A, Barry John, ed. Desktop publishing. Homewood, Ill: Dow Jones-Irwin, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heuberger, Albert, Hendrik Lieske, and Erlangen Fraunhofer IIS. Contributions to the Link Performance Evaluation of Low Power Wide Area (LPWA) Networks. Fraunhofer IRB Verlag, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Low Power Wide Area"

1

Abdul Latiff, N. A., I. S. Ismail, M. H. Yusoff, A. R. Salisa, and J. A. Shukor. "Scalability Analysis of Low-Power Wide Area Network Technology." In Proceedings of Fifth International Congress on Information and Communication Technology, 129–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5856-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wan, Liang, Yirui Huang, Weihua Li, Yu Zhang, and Zhijian Zhang. "Low-Power Wide Area Networks: Changes for Smart Grid." In Lecture Notes in Electrical Engineering, 967–74. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6508-9_117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dushin, S. V., and S. A. Frolov. "Distributed Data Compression Algorithm for Low-Power Wide-Area Networks." In Communications in Computer and Information Science, 163–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36625-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Verma, Shilpi, Sindhu Hak Gupta, and Richa Sharma. "Analysis and Optimization of Low Power Wide Area IoT Network." In Transactions on Computational Science XXXVIII, 98–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-63170-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roth, Yoann, Jean-Baptiste Doré, Laurent Ros, and Vincent Berg. "A Comparison of Physical Layers for Low Power Wide Area Networks." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 261–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40352-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kominami, Daichi. "Another Prediction Method and Application to Low-Power Wide-Area Networks." In Fluctuation-Induced Network Control and Learning, 181–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4976-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shen, Yao, Xiaorong Zhu, and Yue Wang. "RPMA Low-Power Wide-Area Network Planning Method Basing on Data Mining." In Ad Hoc Networks, 115–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05888-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ismail, I. S., N. A. Abdul Latiff, F. Z. Rokhani, and S. Abdul Aziz. "A Review on Performances Evaluation of Low Power Wide Area Networks Technology." In 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, 343–49. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6447-1_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weber, Daniel, Christian Schilling, and Frank Wisselink. "Low Power Wide Area Networks: The Game Changer for the Internet of Things." In Management for Professionals, 175–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77724-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barillaro, Sebastian, Dhananjay Anand, Avi M. Gopstein, and Julian Barillaro. "A Demonstration of Low Power Wide Area Networking for City-Scale Monitoring Applications." In Ad-Hoc, Mobile, and Wireless Networks, 608–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31831-4_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Low Power Wide Area"

1

Ismail, Dali, Mahbubur Rahman, and Abusayeed Saifullah. "Low-power wide-area networks." In Workshops ICDCN 2018: Workshops co-located with the International Conference on Distributed Computing and Networks 2018. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3170521.3170529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keyi Zhang and Alan Marchiori. "Crowdsourcing low-power wide-area IoT networks." In 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 2017. http://dx.doi.org/10.1109/percom.2017.7917849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lavric, Alexandru, and Adrian Ioan Petrariu. "High-Density Low Power Wide Area Networks." In 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2018. http://dx.doi.org/10.1109/ecai.2018.8678997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bor, Martin C., Utz Roedig, Thiemo Voigt, and Juan M. Alonso. "Do LoRa Low-Power Wide-Area Networks Scale?" In MSWiM '16: 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2988287.2989163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dongare, Adwait, Craig Hesling, Khushboo Bhatia, Artur Balanuta, Ricardo Lopes Pereira, Bob Iannucci, and Anthony Rowe. "OpenChirp: A Low-Power Wide-Area Networking architecture." In 2017 IEEE International Conference on Pervasive Computing and Communications: Workshops (PerCom Workshops). IEEE, 2017. http://dx.doi.org/10.1109/percomw.2017.7917625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abbas, Riyadh, Ali Al-Sherbaz, Abdeldjalil Bennecer, and Phil Picton. "Collision Evaluation in Low Power Wide Area Networks." In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019. http://dx.doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Qin, Zhijin, Yuanwei Liu, Geoffrey Ye Li, and Julie A. McCann. "Modelling and analysis of low-power wide-area networks." In 2017 IEEE International Conference on Communications (ICC). IEEE, 2017. http://dx.doi.org/10.1109/icc.2017.7996589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eletreby, Rashad, Diana Zhang, Swarun Kumar, and Osman Yağan. "Empowering Low-Power Wide Area Networks in Urban Settings." In SIGCOMM '17: ACM SIGCOMM 2017 Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3098822.3098845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lukic, Milan, Zivorad Mihajlovic, and Ivan Mezei. "Data Flow in Low-Power Wide-Area IoT Applications." In 2018 26th Telecommunications Forum (TELFOR). IEEE, 2018. http://dx.doi.org/10.1109/telfor.2018.8611848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Katusic, Damjan, Pavle Skocir, Mario Kusek, and Igor Cavrak. "Survey on Low Power Wide Area Networks in IoT." In 2020 International Conference on Smart Systems and Technologies (SST). IEEE, 2020. http://dx.doi.org/10.1109/sst49455.2020.9264085.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Low Power Wide Area"

1

Farrell, S., ed. Low-Power Wide Area Network (LPWAN) Overview. RFC Editor, May 2018. http://dx.doi.org/10.17487/rfc8376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dorfler, Florian, Mihailo R. Jovanovic, Michael Chertkov, and Francesco Bullo. Sparsity-Promoting Optimal Wide-Area Control of Power Networks. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1094827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lian, Jianming, Shaobu Wang, Marcelo A. Elizondo, Jacob Hansen, Renke Huang, Rui Fan, Harold Kirkham, Laurentiu D. Marinovici, Dave Schoenwald, and Felipe Wilches-Bernal. Universal Wide-area Damping Control for Mitigating Inter-area Oscillations in Power Systems. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1524246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mills, Andrew, and Ryan Wiser. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/986925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cragie, R. IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Paging Dispatch. Edited by P. Thubert. RFC Editor, November 2016. http://dx.doi.org/10.17487/rfc8025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bormann, C., L. Toutain, and R. Cragie. IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing Header. Edited by P. Thubert. RFC Editor, April 2017. http://dx.doi.org/10.17487/rfc8138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thubert, P., ed. IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective Fragment Recovery. RFC Editor, November 2020. http://dx.doi.org/10.17487/rfc8931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chakrabarti, S., E. Nordmark, and C. Bormann. Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs). Edited by Z. Shelby. RFC Editor, November 2012. http://dx.doi.org/10.17487/rfc6775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, E., and D. Kaspar. Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs). RFC Editor, April 2012. http://dx.doi.org/10.17487/rfc6568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nordmark, E., S. Chakrabarti, and C. Perkins. Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery. Edited by P. Thubert. RFC Editor, November 2018. http://dx.doi.org/10.17487/rfc8505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography