Academic literature on the topic 'LOW POWER PERFORMANCE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LOW POWER PERFORMANCE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LOW POWER PERFORMANCE"
Cao, Qiang, Jiang Jiang, Chang Wang, and Yongxin Zhu. "FPGA Implementation of High Performance and Low Power VOD Server." International Journal of Future Computer and Communication 3, no. 3 (2014): 148–52. http://dx.doi.org/10.7763/ijfcc.2014.v3.286.
Full textWu, A., and C. K. Ng. "High performance low power low voltage adder." Electronics Letters 33, no. 8 (1997): 681. http://dx.doi.org/10.1049/el:19970464.
Full textHan, Wei, Ahmet T. Erdogan, Tughrul Arslan, and Mohd Hasan Hasan. "High-Performance Low-Power FFT Cores." ETRI Journal 30, no. 3 (June 9, 2008): 451–60. http://dx.doi.org/10.4218/etrij.08.0107.0189.
Full textDeininger, W. D., G. Cruciani, and M. J. Glogowski. "Performance comparisons of low-power arcjets." Journal of Propulsion and Power 11, no. 6 (November 1995): 1368–71. http://dx.doi.org/10.2514/3.23982.
Full textXu, Ning, Zhoughua Jiang, and Feng Huang. "Performance and Low Power Driven Floorplanning." Journal of Algorithms & Computational Technology 1, no. 2 (June 2007): 161–69. http://dx.doi.org/10.1260/174830107781389058.
Full textYoshikawa, Masaya, and Hidekazu Terai. "Performance Driven Placement Procedure for Low Power." IEEJ Transactions on Electronics, Information and Systems 124, no. 1 (2004): 18–25. http://dx.doi.org/10.1541/ieejeiss.124.18.
Full textAndrew, R., and K. Venos. "Multiphase synchronous circuits for low power performance." Microelectronics Journal 29, no. 3 (March 1998): 105–11. http://dx.doi.org/10.1016/s0026-2692(97)00034-7.
Full textYoshikawa, Masaya, and Hidekazu Terai. "Performance-driven placement procedure for low power." Electrical Engineering in Japan 151, no. 1 (2005): 56–65. http://dx.doi.org/10.1002/eej.20057.
Full textVallem, Dr Sharmila, G. Tejaswi, Hrithik Sidharth, and Shilpa Reddy. "High Performance, Low Power Wallace Tree Multiplier." International Journal of Recent Technology and Engineering (IJRTE) 12, no. 2 (July 30, 2023): 20–25. http://dx.doi.org/10.35940/ijrte.b7685.0712223.
Full textAsna, M., H. Shareef, S. N. Khalid, A. O. Idris, A. N. Aldarmaki, and Basil Hamed. "Universal power converter for low power applications." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 4 (December 1, 2019): 2165. http://dx.doi.org/10.11591/ijpeds.v10.i4.pp2165-2172.
Full textDissertations / Theses on the topic "LOW POWER PERFORMANCE"
Zhu, Haikun. "High-performance low-power VLSI design." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3250072.
Full textTitle from first page of PDF file (viewed April 4, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 97-101).
Lee, Sunghyuk. "Techniques for low-power high-performance ADCs." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87928.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 127-133).
Analog-to-digital converters (ADCs) are essential building blocks in many electronic systems which require digital signal processing and storage of analog signals. Traditionally, ADCs are considered a power hungry circuit. This thesis investigates ADC design techniques to achieve high-performance with low power consumption. Two designs are demonstrated. The first design is a voltage scalable zero-crossing based pipelined ADC. The zero-crossing based circuit technique is modified and optimized to improve the limited ADC resolution in nano-scaled CMOS technology. The proposed unidirectional charge transfer scheme allows faster and more energy efficient operation by eliminating unnecessary charging and discharging of the capacitors. Furthermore, the reduced transient disturbance at the beginning of the fine charge transfer phase improves the accuracy of operation. Power supply scaling enhances power efficiency at low sampling rates much like in digital circuits and widens the conversion frequency range where the ADC operates with highest efficiency. The second design is a high speed time-interleaved (TI) SAR ADC with background timing-skew calibration. A time-interleaved structure is employed to improve the effective sampling rate without sacrificing energy efficiency. SAR ADCs are used for each channel to make good use of device scaling. The proposed ADC architecture incorporates a flash ADC operating at the full sampling rate of the TI ADC. The flash ADC output is multiplexed to resolve MSBs of the SAR channels. Because the full-speed flash ADC does not suffer from timing-skew errors, the flash ADC output is also used as the timing reference to estimate the timing-skew of the SAR ADCs.
by Sunghyuk Lee.
Ph. D.
Bystrøm, Vebjørn. "Low power/high performance dynamic reconfigurable filter-design." Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8899.
Full textThe main idea behind this thesis was to optimize the multipliers in a finite impulse response (FIR) filter. The project was chosen because digital filters are very common in digital signal processing and is an exciting area to work with. The first part of the text describes some theory behind the digital filter and how to optimize the multipliers that are a part of digital filters. The substantial thing to emphasize here is the use of Canonical Signed Digits (CSD) encoding. CSD representation for FIR filters can reduce the delay and complexity of the hardware implementation. CSD-encoding reduces the amount of non-zero digits and will by this reduce the multiplication process to a few additions/subtractions and shifts. In this thesis it was designed 4 versions of the same filter, that was implemented on an FPGA, where the substantial and most interesting results were the differences between coefficients that was CSD-encoded and coefficients that was represented with 2's complement. It was shown that the filter version that had CSD-encoded coefficients used almost 20% less area then the filter version with 2's complement coefficients. The CSD-encoded filter could run on a maximum frequency of 504,032 MHz compared the other filter that could run on a maximum frequency of 249,123 MHz. One of the filters that was designed was designed using the * operator in VHDL, that proved to be the most efficient when it came to the use of number of slices and speed. The reason for this was because an FPGA has built-in multipliers, so if one has the opportunity to use the multiplier they will give the best result instead of using logic blocks on the FPGA It was also discussed a filter that has the ability to change the coefficients at run-time without starting the design from the beginning. This is an advantage because a constant coefficient multiplier requires the FPGA to be reconfigured and the whole design cycle to be re-implemented. The drawback with the dynamic multiplier is that is uses more hardware resources.
Ma, Albert. "Circuits for high-performance low-power VLSI logic." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37906.
Full textIncludes bibliographical references (p. 85-88).
The demands of future computing, as well as the challenges of nanometer-era VLSI design, require new digital logic techniques and styles that are simultaneously high performance, energy efficient, and robust to noise and variation. We propose a new family of logic styles called Preset Skewed Static Logic (PSSL). PSSL bridges the gap between the two main logic styles, static CMOS logic and domino logic, occupying an intermediate region in the energy-delay-robustness space between the two. PSSL is better than domino in terms of energy and robustness, and is better than static CMOS in terms of delay. PSSL works by partially overlapping the execution of consecutive iterations through speculative evaluation. This is accomplished by presetting nodes at register boundaries before input arrival.
by Albert Ma.
Ph.D.
Zhang, Ling. "Low power high performance interconnect design and optimization." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3368979.
Full textTitle from first page of PDF file (viewed September 17, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 113-118).
NEUPANE, USHA. "PERFORMANCE ANALYSIS OF LOW-POWER, SHORT-RANGE WIRELESS TRANSCEIVERS." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4169.
Full textM.S.E.E.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical Engineering
Yazdani, Aminabadi Reza. "Ultra low-power, high-performance accelerator for speech recognition." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667429.
Full textLos sistemas de reconocimiento automático del habla (ASR por sus siglas en inglés, Automatic Speech Recognition) son sin lugar a dudas una de las aplicaciones más relevantes en el área emergente de aprendizaje profundo (Deep Learning), specialmente en el segmento de los dispositivos móviles. Realizar el reconocimiento del habla de forma rápida y precisa tiene un elevado coste en energía, requiere de gran capacidad de memoria y de cómputo, lo cual no es deseable en sistemas móviles que tienen severas restricciones de consumo energético y disipación de potencia. El uso de arquitecturas específicas en forma de aceleradores hardware permite reducir el consumo energético de los sistemas de reconocimiento del habla, al tiempo que mejora el rendimiento y reduce la presión en el sistema de memoria. En esta tesis presentamos un acelerador específicamente diseñado para sistemas de reconocimiento del habla de gran vocabulario, independientes del orador y que funcionan en tiempo real. Un sistema de reconocimiento del habla estado del arte consiste principalmente en dos componentes: el modelo acústico basado en una red neuronal profunda (DNN, Deep Neural Network) y la búsqueda de Viterbi basada en un grafo que representa el lenguaje. Como primer objetivo nos centramos en la búsqueda de Viterbi, ya que representa el principal cuello de botella en los sistemas ASR. El acelerador para el algoritmo de Viterbi incluye técnicas innovadoras para mejorar el sistema de memoria, que es el mayor cuello de botella en rendimiento y energía, incluyendo técnicas de pre-búsqueda y una nueva técnica de ahorro de ancho de banda a memoria principal específicamente diseñada para sistemas ASR. Además, como el grafo que representa el lenguaje requiere de gran capacidad de almacenamiento en memoria (más de 1 GB), proponemos cambiar su representación y dividirlo en distintos grafos que se componen en tiempo de ejecución durante la búsqueda de Viterbi. De esta forma conseguimos reducir el almacenamiento en memoria principal en un factor de 31x, alcanzar un rendimiento 155 veces superior a tiempo real y reducir el consumo energético y la disipación de potencia en varios órdenes de magnitud comparado con las CPUs y las GPUs. En el siguiente paso, proponemos un novedoso sistema hardware para reconocimiento del habla que integra de forma efectiva un acelerador para DNNs podadas y cuantizadas con el acelerador de Viterbi. Nuestros resultados muestran que podar y/o cuantizar el DNN para el modelo acústico permite mantener la precisión pero causa un incremento en el tiempo de ejecución del sistema completo de hasta el 33%. Aunque podar/cuantizar mejora la eficiencia del DNN, éstas técnicas producen un gran incremento en la carga de trabajo de la búsqueda de Viterbi ya que las probabilidades calculadas por el DNN son menos fiables, es decir, se reduce la confianza en las predicciones del modelo acústico. Con el fin de evitar un incremento inaceptable en la carga de trabajo de la búsqueda de Viterbi, nuestro sistema restringe la búsqueda a las N hipótesis más probables en cada paso de la búsqueda. Nuestra solución permite combinar de forma efectiva un acelerador de DNNs con un acelerador de Viterbi incluyendo todas las optimizaciones de poda/cuantización. Nuestro resultados experimentales muestran que dicho sistema alcanza un rendimiento 222 veces superior a tiempo real con una disipación de potencia de 1.26 vatios, unos requisitos de memoria modestos de 41 MB y un uso de ancho de banda a memoria principal de, como máximo, 381 MB/s, ofreciendo una solución adecuada para dispositivos móviles.
Oskuii, Saeeid Tahmasbi. "Comparative study on low-power high-performance flip-flops." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2077.
Full textThis thesis explores the energy-delay space of eight widely referred flip-flops in a 0.13µm CMOS technology. The main goal has been to find the smallest set of flip-flop topologies to be included in a “high performance” flip-flop cell library covering a wide range of power-performance targets. Based on the comparison results, transmission gate-based flip-flops show the best powerperformance trade-offs with a total delay (clock-to-output + setup time) down to 105ps. For higher performance, the pulse-triggered flip-flops are the fastest (80ps) alternatives suitable to be included in a flip-flop cell library. However, pulse-triggered flip-flops consume significantly larger power (about 2.5x) compared to other fast but fully dynamic flip-flops such as TSPC and dynamic TG-based flip-flops.
Mohan, Nitin. "Low-Power High-Performance Ternary Content Addressable Memory Circuits." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2873.
Full textDuewer, Bruce Eliot. "A Low-Power, High Performance MEMS-based Switch Fabric." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011015-145122.
Full textDUEWER, BRUCE ELIOT. A Low-Power, High Performance MEMS-based Switch Fabric. (Under the direction of Paul D. Franzon.)An approach with the potential for building large low power high performance crossbar networks is presented. Thin film polysilicon MEMS devices are developed to provide crosspoints. These devices are vertically moving plates that serve as variable capacitors. Addressing of large arrays using 2n rather than n-squared lines despite no active circuitry on the MEMS chips is facilitated by bistable device operation. Derivations of equations for bistable device operation are presented. Low power operation is possible as the devices are electrostatically controlled and are stationary except during reconfiguration. Early devices are fabricated using the MUMPS process. The bistability and array addressability properties are demonstrated. The substrate effect on device operation is measured and modeled; methods for utilizing the substrate effect to tune device operation are presented. Later devices are fabricated using the SUMMiT process. Changes in the SUMMiT design rules to increase allowable vertical motion range are proposed and designs using them fabricated. S-parameter characteristics of devices in both `on' and `off' states are measured. Addition of metallization after chip fabrication and release is necessary to lower the resistance of interconnect. A self masking method for applying this metallization allowing for decreased resistance at line crossings is proposed. This method is tested using each of sputtering and evaporation as the deposition technique for a gold and adhesion layer stack. Effectiveness of the method with each technique is evaluated. Chips suitable for providing high voltage control for large MEMS arrays are fabricated in a 2um feature size CMOS process. Architectures suitable for building large crossbars employing variable capacitor arrays are discussed. Optimization of hybrid CMOS/MEMS Clos arrays on the basis of criteria other than minimization of crosspoints is discussed. Array sizings to provide 192*192 and 256*256 crossbars are presented, and software examples for sizing and controlling Clos networks are provided. Evaluation of the suitability of the MEMS devices developed for use as digital or broadband crosspoints is evaluated, and potential future directions are proposed.
Books on the topic "LOW POWER PERFORMANCE"
J, Sarmiento Charles, and United States. National Aeronautics and Space Administration., eds. Low power arcjet performance. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textYoo, Hoi-Jun. Low-power NoC for high-performance SoC design. Boca Raton, Fl: Taylor & Francis, 2008.
Find full textKorec, Jacek. Low voltage power MOSFETs: Design, performance and applications. New York: Springer, 2011.
Find full textYoo, Hoi-Jun. Low-Power NoC for High-Performance SoC Design. London: Taylor and Francis, 2008.
Find full textG, Oklobdzija Vojin, ed. Digital system clocking: High-performance and low-power aspects. New York: IEEE, 2003.
Find full textH, Berns Darren, and United States. National Aeronautics and Space Administration., eds. Performance of a low-power subsonic-arc-attachment arcjet thruster. [Washington, D.C.]: NASA, 1993.
Find full textH, Berns Darren, and United States. National Aeronautics and Space Administration., eds. Performance of a low-power subsonic-arc-attachment arcjet thruster. [Washington, D.C.]: NASA, 1993.
Find full textH, Berns Darren, and United States. National Aeronautics and Space Administration., eds. Performance of a low-power subsonic-arc-attachment arcjet thruster. [Washington, D.C.]: NASA, 1993.
Find full textLim, Sung Kyu. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9542-1.
Full textHo, Ron, and Robert Drost, eds. Coupled Data Communication Techniques for High-Performance and Low-Power Computing. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6588-2.
Full textBook chapters on the topic "LOW POWER PERFORMANCE"
Elrabaa, Muhammad S., Issam S. Abu-Khater, and Mohamed I. Elmasry. "Low-Power High-Performance Adders." In Advanced Low-Power Digital Circuit Techniques, 7–29. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8546-0_2.
Full textElrabaa, Muhammad S., Issam S. Abu-Khater, and Mohamed I. Elmasry. "Low-Power High-Performance Multipliers." In Advanced Low-Power Digital Circuit Techniques, 31–81. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8546-0_3.
Full textVerma, Aishita, Anum Khan, and Subodh Wairya. "Low-Power High-Performance Hybrid Scalable." In Proceedings of First International Conference on Computational Electronics for Wireless Communications, 161–72. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6246-1_14.
Full textSteyaert, M., J. Crols, and G. Plas. "A High Performance RDS-detector for Low Voltage Applications." In Low-Voltage Low-Power Analog Integrated Circuits, 7–19. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2283-6_2.
Full textNawathe, Umesh Gajanan. "Design of High Performance Low Power Microprocessors." In CMOS Processors and Memories, 3–27. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9216-8_1.
Full textNikshepa, Vasudeva Pai, and Udaya Kumar K. Shenoy. "6LowPan—Performance Analysis on Low Power Networks." In International Conference on Computer Networks and Communication Technologies, 145–56. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8681-6_15.
Full textLakshmi Priya, G., M. Venkatesh, S. Preethi, T. Venish Kumar, and N. B. Balamurugan. "Performance Analysis of Emerging Low-Power Junctionless Tunnel FETs." In Emerging Low-Power Semiconductor Devices, 107–25. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003240778-6.
Full textDevi, Padma, Gurinder pal Singh, and Balwinder singh. "Low Power Optimized Array Multiplier with Reduced Area." In High Performance Architecture and Grid Computing, 224–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22577-2_30.
Full textBaskiyar, Sanjeev, and Kiran Kumar Palli. "Low Power Scheduling of DAGs to Minimize Finish Times." In High Performance Computing - HiPC 2006, 353–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11945918_36.
Full textLi, Yong, Zhiying Wang, Jian Ruan, and Kui Dai. "A Low-Power Globally Synchronous Locally Asynchronous FFT Processor." In High Performance Computing and Communications, 168–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75444-2_21.
Full textConference papers on the topic "LOW POWER PERFORMANCE"
CURRAN, FRANCIS, and CHARLES SARMIENTO. "Low power arcjet performance." In 21st International Electric Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2578.
Full textAlbera, G., and R. I. Bahar. "Power/performance advantages of victim buffer in high-performance processors." In Proceedings IEEE Alessandro Volta Memorial Workshop on Low-Power Design. IEEE, 1999. http://dx.doi.org/10.1109/lpd.1999.750402.
Full text"W2B: High Performance Low Power Circuits." In 2018 31st IEEE International System-on-Chip Conference (SOCC). IEEE, 2018. http://dx.doi.org/10.1109/socc.2018.8618573.
Full textGuthaus, Matthew R., and Baris Taskin. "High-performance, low-power resonant clocking." In the International Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2429384.2429545.
Full textBelikov, M., O. Gorshkov, V. Muravlev, R. Rizakhanov, A. Shagayda, and A. Snnirev. "High-performance low power Hall thruster." In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3780.
Full textXiong, Wade, and Vyshnavi Suntharalingam. "High Performance and Low Power Devices." In 2006 IEEE international SOI. IEEE, 2006. http://dx.doi.org/10.1109/soi.2006.284407.
Full text"High Performance and Low Power Devices." In 2006 IEEE international SOI Conferencee Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/soi.2006.284408.
Full textSenejani, M. Nadi, M. Hosseinghadiry, and M. Miryahyaei. "Low Dynamic Power High Performance Adder." In 2009 International Conference on Future Computer and Communication (ICFCC). IEEE, 2009. http://dx.doi.org/10.1109/icfcc.2009.99.
Full textVeera Boopathy E, Raghul G., and Karthick K. "Low power and high performance MOSFET." In 2015 International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA). IEEE, 2015. http://dx.doi.org/10.1109/vlsi-sata.2015.7050455.
Full textProuty, M., and R. Johnson. "Small, Low Power, High Performance Magnetometers." In EGM 2010 International Workshop. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.165.a_op_11.
Full textReports on the topic "LOW POWER PERFORMANCE"
Rajive Ganguli and Sukumar Bandopadhyay. Low-Rank Coal Grinding Performance Versus Power Plant Performance. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/963349.
Full textNelson, Brian A. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers. US: Nelson Scientific Explorations L.L.C., Mountlake Terrace WA, October 2006. http://dx.doi.org/10.2172/893760.
Full textTripathi, J., and J. de Oliveira, eds. Performance Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL). RFC Editor, October 2012. http://dx.doi.org/10.17487/rfc6687.
Full textROZANOVA, N. CONTENT OF THE REPUTATION OF A REGIONAL POWER IN THE CONTEXT OF A NORMATIVE ASSESSMENT OF ITS PERFORMANCE. Science and Innovation Center Publishing House, 2021. http://dx.doi.org/10.12731/2070-7568-2021-10-5-1-39-48.
Full textHacke, P., K. Terwilliger, and S. Kurtz. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1090973.
Full textNuttall, Albert H. Performance of Power-Law Processor with Normalization for Random Signals of Unknown Structure. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada327076.
Full textOduncu, Arif. Country Diagnostic Study – The Kyrgyz Republic. Islamic Development Bank Institute, December 2021. http://dx.doi.org/10.55780/rp21001.
Full textClaus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.
Full textNuttall, Albert H. Near-Optimum Detection Performance of Power-Law Processors for Random Signals of Unknown Locations, Structure, Extent, and Arbitrary Strengths,. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada309568.
Full textBoards for all? A review of power, policy and people on the boards of organisations active in global health. Global Health 50/50, March 2022. http://dx.doi.org/10.56649/ucet6863.
Full text