Journal articles on the topic 'Low Mach regime'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low Mach regime.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Faccanoni, Gloria, Bérénice Grec, and Yohan Penel. "A homogeneous relaxation low mach number model." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 4 (July 2021): 1569–98. http://dx.doi.org/10.1051/m2an/2021032.
Full textJardine, M., and E. R. Priest. "Energetics of compressible models of fast steady-state magnetic reconnection." Journal of Plasma Physics 43, no. 1 (February 1990): 141–50. http://dx.doi.org/10.1017/s0022377800014677.
Full textJi, Zifei, Huiqiang Zhang, and Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 13 (February 20, 2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Full textBaus, Franziska, Axel Klar, Nicole Marheineke, and Raimund Wegener. "Low-Mach-number and slenderness limit for elastic Cosserat rods and its numerical investigation." Asymptotic Analysis 120, no. 1-2 (October 6, 2020): 103–21. http://dx.doi.org/10.3233/asy-191581.
Full textShajii, A., and J. P. Freidberg. "Theory of low Mach number compressible flow in a channel." Journal of Fluid Mechanics 313 (April 25, 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Full textTurner, Stephen E., Lok C. Lam, Mohammad Faghri, and Otto J. Gregory. "Experimental Investigation of Gas Flow in Microchannels." Journal of Heat Transfer 126, no. 5 (October 1, 2004): 753–63. http://dx.doi.org/10.1115/1.1797036.
Full textTomasini, M., N. Dolez, and J. Léorat. "Instability of a rotating shear layer in the transonic regime." Journal of Fluid Mechanics 306 (January 10, 1996): 59–82. http://dx.doi.org/10.1017/s0022112096001231.
Full textBeccantini, A., E. Studer, S. Gounand, J. P. Magnaud, T. Kloczko, C. Corre, and S. Kudriakov. "Numerical simulations of a transient injection flow at low Mach number regime." International Journal for Numerical Methods in Engineering 76, no. 5 (October 29, 2008): 662–96. http://dx.doi.org/10.1002/nme.2331.
Full textPröbsting, S., Y. Yang, H. Zhang, P. Li, Y. Liu, and Y. Li. "Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise." Physics of Fluids 34, no. 9 (September 2022): 094115. http://dx.doi.org/10.1063/5.0107181.
Full textDegond, Pierre, and Min Tang. "All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations." Communications in Computational Physics 10, no. 1 (July 2011): 1–31. http://dx.doi.org/10.4208/cicp.210709.210610a.
Full textAuddy, Sayantan, Shantanu Basu, and Takahiro Kudoh. "The Magnetic Field versus Density Relation in Star-forming Molecular Clouds." Astrophysical Journal Letters 928, no. 1 (March 1, 2022): L2. http://dx.doi.org/10.3847/2041-8213/ac5a5a.
Full textRadhakrishnan P, Ramanan G, Chandan Gowda H R, Meghana C K, and Chaithra A N. "Aerodynamic Performance Analysis of a Variable Sweep Wing for Commercial Aircraft Applications." ACS Journal for Science and Engineering 1, no. 1 (March 12, 2021): 31–37. http://dx.doi.org/10.34293/acsjse.v1i1.5.
Full textWang, L., Y. Zhao, and S. Fu. "Computational study of drag increase due to wall roughness for hypersonic flight." Aeronautical Journal 121, no. 1237 (March 2017): 395–415. http://dx.doi.org/10.1017/aer.2017.9.
Full textChalons, Christophe, Mathieu Girardin, and Samuel Kokh. "An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes." Communications in Computational Physics 20, no. 1 (June 22, 2016): 188–233. http://dx.doi.org/10.4208/cicp.260614.061115a.
Full textMeng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke, and Xiaowen Shan. "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows." Journal of Fluid Mechanics 718 (February 8, 2013): 347–70. http://dx.doi.org/10.1017/jfm.2012.616.
Full textGalié, Thomas, Jonathan Jung, Ibtissem Lannabi, and Vincent Perrier. "Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system." ESAIM: Proceedings and Surveys 76 (2024): 35–51. http://dx.doi.org/10.1051/proc/202476035.
Full textWang, Meng, Yi Liu, and Kan Wang. "Wall-pressure fluctuations in weakly compressible turbulent channel flow." Journal of the Acoustical Society of America 154, no. 4_supplement (October 1, 2023): A282. http://dx.doi.org/10.1121/10.0023529.
Full textRubin, T., E. J. Kolmes, I. E. Ochs, M. E. Mlodik, and N. J. Fisch. "Fueling limits in a cylindrical viscosity-limited reactor." Physics of Plasmas 29, no. 8 (August 2022): 082302. http://dx.doi.org/10.1063/5.0101271.
Full textBarsukow, Wasilij, Philipp V. F. Edelmann, Christian Klingenberg, Fabian Miczek, and Friedrich K. Röpke. "A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics." Journal of Scientific Computing 72, no. 2 (January 31, 2017): 623–46. http://dx.doi.org/10.1007/s10915-017-0372-4.
Full textZou, Ziqiang, Edouard Audit, Nicolas Grenier, and Christian Tenaud. "An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime." Flow, Turbulence and Combustion 105, no. 4 (March 31, 2020): 1413–44. http://dx.doi.org/10.1007/s10494-020-00125-1.
Full textAlam, Mahbub, and Paul L. Voss. "Graphene quantum interference photodetector." Beilstein Journal of Nanotechnology 6 (March 12, 2015): 726–35. http://dx.doi.org/10.3762/bjnano.6.74.
Full textvan Marle, Allard Jan. "On the influence of supra-thermal particle acceleration on the morphology of low-Mach, high-β shocks." Monthly Notices of the Royal Astronomical Society 496, no. 3 (June 19, 2020): 3198–208. http://dx.doi.org/10.1093/mnras/staa1771.
Full textLi, Xiang-Yu, and Lars Mattsson. "Coagulation of inertial particles in supersonic turbulence." Astronomy & Astrophysics 648 (April 2021): A52. http://dx.doi.org/10.1051/0004-6361/202040068.
Full textEiximeno, Benet, Carlos Tur-Mongé, Oriol Lehmkuhl, and Ivette Rodríguez. "Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder." Fluids 8, no. 8 (August 21, 2023): 236. http://dx.doi.org/10.3390/fluids8080236.
Full textGat, Ilana, Georgios Matheou, Daniel Chung, and Paul E. Dimotakis. "Incompressible variable-density turbulence in an external acceleration field." Journal of Fluid Mechanics 827 (August 24, 2017): 506–35. http://dx.doi.org/10.1017/jfm.2017.490.
Full textHuet, Maxime, and Alexis Giauque. "A nonlinear model for indirect combustion noise through a compact nozzle." Journal of Fluid Mechanics 733 (September 23, 2013): 268–301. http://dx.doi.org/10.1017/jfm.2013.442.
Full textDoshi, Parshwanath S., Rajesh Ranjan, and Datta V. Gaitonde. "Global and local modal characteristics of supersonic open cavity flows." Physics of Fluids 34, no. 3 (March 2022): 034104. http://dx.doi.org/10.1063/5.0082808.
Full textCHANG, KEH-CHIN, and WEN-CHUNG WU. "A STUDY ON FLOW REGIME NEAR CRITICAL RAYLEIGH NUMBER FOR BUOYANCY-DRIVEN CAVITY FLOW." Modern Physics Letters B 19, no. 28n29 (December 20, 2005): 1635–38. http://dx.doi.org/10.1142/s0217984905010098.
Full textTabrizi, Amir Bashirzadeh, and Binxin Wu. "The role of compressibility in computing noise generated at a cavitating orifice." International Journal of Aeroacoustics 18, no. 1 (November 27, 2018): 73–91. http://dx.doi.org/10.1177/1475472x18812801.
Full textVera, M., H. P. Hodson, and R. Vazquez. "The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade." Journal of Turbomachinery 127, no. 4 (March 1, 2004): 747–54. http://dx.doi.org/10.1115/1.1934446.
Full textProença, A. R., O. De almeida, and R. H. Self. "AERODYNAMICS AND AEROACOUSTICS SURVEY FOR A LOW SPEED SUBSONIC JET OPERATING AT MACH 0.25." Revista de Engenharia Térmica 13, no. 2 (December 31, 2014): 33. http://dx.doi.org/10.5380/reterm.v13i2.62092.
Full textGouasmi, Ayoub, Scott M. Murman, and Karthik Duraisamy. "Entropy-stable schemes in the low-Mach-number regime: Flux-preconditioning, entropy breakdowns, and entropy transfers." Journal of Computational Physics 456 (May 2022): 111036. http://dx.doi.org/10.1016/j.jcp.2022.111036.
Full textTahani, Mojtaba, Mohammad Hojaji, and Seyed Vahid Mahmoodi Jezeh. "Turbulent jet in crossflow analysis with LES approach." Aircraft Engineering and Aerospace Technology 88, no. 6 (October 3, 2016): 717–28. http://dx.doi.org/10.1108/aeat-10-2014-0167.
Full textKalita, B. C., and N. Devi. "Kinetic Alfvén solitons in a low-β plasma under the influence of electron drift motion." Journal of Plasma Physics 56, no. 1 (August 1996): 35–44. http://dx.doi.org/10.1017/s0022377800019073.
Full textDeng, S., B. W. van Oudheusden, T. Xiao, and H. Bijl. "A Computational Study on the Aerodynamic Influence of a Propeller on an MAV by Unstructured Overset Grid Technique and Low Mach Number Preconditioning." Open Aerospace Engineering Journal 5, no. 1 (November 1, 2012): 11–21. http://dx.doi.org/10.2174/1874146001205010011.
Full textKhayat, Roger E., and Byung Chan Eu. "Generalized hydrodynamics and linear stability analysis of cylindrical Couette flow of a dilute Lennard–Jones fluid." Canadian Journal of Physics 71, no. 11-12 (November 1, 1993): 518–36. http://dx.doi.org/10.1139/p93-081.
Full textDesjacques, Vincent, Adi Nusser, and Robin Bühler. "Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers." Astrophysical Journal 928, no. 1 (March 1, 2022): 64. http://dx.doi.org/10.3847/1538-4357/ac5519.
Full textVilquin, Alexandre, Hamid Kellay, and Jean-François Boudet. "Shock waves induced by a planar obstacle in a vibrated granular gas." Journal of Fluid Mechanics 842 (March 7, 2018): 163–87. http://dx.doi.org/10.1017/jfm.2018.128.
Full textDimarco, Giacomo, Raphaël Loubère, Victor Michel-Dansac, and Marie-Hélène Vignal. "Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime." Journal of Computational Physics 372 (November 2018): 178–201. http://dx.doi.org/10.1016/j.jcp.2018.06.022.
Full textRieper, Felix, and Georg Bader. "The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime." Journal of Computational Physics 228, no. 8 (May 2009): 2918–33. http://dx.doi.org/10.1016/j.jcp.2009.01.002.
Full textWu, J. S., S. Y. Chou, U. M. Lee, Y. L. Shao, and Y. Y. Lian. "Parallel DSMC Simulation of a Single Under-Expanded Free Orifice Jet From Transition to Near-Continuum Regime." Journal of Fluids Engineering 127, no. 6 (June 26, 2005): 1161–70. http://dx.doi.org/10.1115/1.2062807.
Full textYamouni, Sami, Denis Sipp, and Laurent Jacquin. "Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis." Journal of Fluid Mechanics 717 (February 1, 2013): 134–65. http://dx.doi.org/10.1017/jfm.2012.563.
Full textGILL, TARSEM SINGH, HARVINDER KAUR, and NARESHPAL SINGH SAINI. "Dust-acoustic solitary waves in a finite temperature dusty plasma with variable dust charge and two temperature ions." Journal of Plasma Physics 70, no. 4 (July 27, 2004): 481–95. http://dx.doi.org/10.1017/s0022377803002733.
Full textYan, Chian, Hong Hui Teng, Xiao Cheng Mi, and Hoi Dick Ng. "The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves." Aerospace 6, no. 6 (May 28, 2019): 62. http://dx.doi.org/10.3390/aerospace6060062.
Full textCollé, Anthony, Jérôme Limido, and Jean-Paul Vila. "An Accurate SPH Scheme for Dynamic Fragmentation modelling." EPJ Web of Conferences 183 (2018): 01030. http://dx.doi.org/10.1051/epjconf/201818301030.
Full textFeireisl, Eduard, Mária Lukáčová-Medviďová, Šárka Nečasová, Antonín Novotný, and Bangwei She. "Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime." Multiscale Modeling & Simulation 16, no. 1 (January 2018): 150–83. http://dx.doi.org/10.1137/16m1094233.
Full textMAYER, CHRISTIAN S. J., DOMINIC A. VON TERZI, and HERMANN F. FASEL. "Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3." Journal of Fluid Mechanics 674 (January 13, 2011): 5–42. http://dx.doi.org/10.1017/s0022112010005094.
Full textTheofanous, T. G., G. J. Li, and T. N. Dinh. "Aerobreakup in Rarefied Supersonic Gas Flows." Journal of Fluids Engineering 126, no. 4 (July 1, 2004): 516–27. http://dx.doi.org/10.1115/1.1777234.
Full textZou, Ziqiang, Nicolas Grenier, Samuel Kokh, Christian Tenaud, and Edouard Audit. "Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime." Journal of Computational Physics 448 (January 2022): 110735. http://dx.doi.org/10.1016/j.jcp.2021.110735.
Full textRieper, Felix. "On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL." Journal of Computational Physics 229, no. 2 (January 2010): 221–32. http://dx.doi.org/10.1016/j.jcp.2009.09.043.
Full text