Academic literature on the topic 'Low-Mach number flows'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low-Mach number flows.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Low-Mach number flows"

1

Alazard, Thomas. "Low Mach Number Flows and Combustion." SIAM Journal on Mathematical Analysis 38, no. 4 (January 2006): 1186–213. http://dx.doi.org/10.1137/050644100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dwyer, Harry A. "Calculation of low Mach number reacting flows." AIAA Journal 28, no. 1 (January 1990): 98–105. http://dx.doi.org/10.2514/3.10358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pozorski, J., and A. Kajzer. "Density diffusion in low Mach number flows." Journal of Physics: Conference Series 2367, no. 1 (November 1, 2022): 012027. http://dx.doi.org/10.1088/1742-6596/2367/1/012027.

Full text
Abstract:
Abstract In the realm of compressible viscous flow modelling, we briefly revisit the debate on a possible inconsistency of the Navier-Stokes (NS) equations. Then, we recall a recent proposal from the literature, put forward by M. Svärd. One of its features is the mass diffusive term in the continuity equation. The presence of density diffusion in the Svärd model reduces dispersive numerical errors when simple centred 2nd order, numerical diffusion free, spatial schemes are used, as confirmed in the simulations of a doubly-periodic shear layer at Ma = 0.05 and Re = 104. Further reduction of the dispersive errors at the spatial discretisation level is possible by more sophisticated approximation techniques.
APA, Harvard, Vancouver, ISO, and other styles
4

Penel, Yohan, Stephane Dellacherie, and Bruno Després. "Coupling strategies for compressible-low Mach number flows." Mathematical Models and Methods in Applied Sciences 25, no. 06 (March 24, 2015): 1045–89. http://dx.doi.org/10.1142/s021820251550027x.

Full text
Abstract:
In order to enrich the modeling of fluid flows, we investigate in this paper a coupling between two models dedicated to distinct regimes. More precisely, we focus on the influence of the Mach number as the low Mach case is known to induce theoretical and numerical issues in a compressible framework. A moving interface is introduced to separate a compressible model (Euler with source term) and its low Mach counterpart through relevant transmission conditions. A global steady state for the coupled problem is exhibited. Numerical simulations are then performed to highlight the influence of the coupling by means of a robust numerical strategy.
APA, Harvard, Vancouver, ISO, and other styles
5

Filippova, O., and D. Hänel. "Lattice-BGK Model for Low Mach Number Combustion." International Journal of Modern Physics C 09, no. 08 (December 1998): 1439–45. http://dx.doi.org/10.1142/s0129183198001308.

Full text
Abstract:
For the simulation of low Mach number reactive flows with significant density changes a modified lattice-BGK model in combination with the conventional convective-diffusion solvers for equations of temperature and species is proposed. Together with boundary-fitting conditions and local grid refinement the scheme enables the accurate consideration of low Mach number combustion in complex geometry as the flows around porous burners or droplets combustion.
APA, Harvard, Vancouver, ISO, and other styles
6

Duarte, Max, Ann S. Almgren, and John B. Bell. "A Low Mach Number Model for Moist Atmospheric Flows." Journal of the Atmospheric Sciences 72, no. 4 (March 31, 2015): 1605–20. http://dx.doi.org/10.1175/jas-d-14-0248.1.

Full text
Abstract:
Abstract A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here, latent heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. The authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.
APA, Harvard, Vancouver, ISO, and other styles
7

Woosely, S. E., A. J. Aspden, J. B. Bell, A. R. Kerstein, and V. Sankaran. "Numerical simulation of low Mach number reacting flows." Journal of Physics: Conference Series 125 (July 1, 2008): 012012. http://dx.doi.org/10.1088/1742-6596/125/1/012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shimomura, Yutaka. "Turbulent transport modeling in low Mach number flows." Physics of Fluids 11, no. 10 (October 1999): 3136–49. http://dx.doi.org/10.1063/1.870171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bell, J. B., A. J. Aspden, M. S. Day, and M. J. Lijewski. "Numerical simulation of low Mach number reacting flows." Journal of Physics: Conference Series 78 (July 1, 2007): 012004. http://dx.doi.org/10.1088/1742-6596/78/1/012004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schochet, Steven. "The mathematical theory of low Mach number flows." ESAIM: Mathematical Modelling and Numerical Analysis 39, no. 3 (May 2005): 441–58. http://dx.doi.org/10.1051/m2an:2005017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Low-Mach number flows"

1

Alkishriwi, Nouri. "Large eddy simulation of low mach number flows /." Aachen : Shaker, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016487054&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Detandt, Yves. "Numerical simulation of aerodynamic noise in low Mach number flows." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210675.

Full text
Abstract:
The evaluation of the noise produced by flows has reached a high level of importance in the past years. The physics surrounding flow-induced noise is quite complex and sensitive to various flow conditions like temperature, shape. Empirical models were built in the past for some special geometries but they cannot be used in a general case for a shape optimization for instance. Experimental aeroacoustic facilities represent the main tool for acoustic analyses of flow fields, but are quite expensive because extreme care must be exercised not to introduce acoustic perturbations in the flow (silent facilities). These tools allow a good analysis of the physical phenomena responsible for noise generation in the flow by a comparison of the noise sources and the flow characteristics (pressure, turbulence,). Nevertheless, the identification and location of noise sources to compare with flow structures requires quite complex methods.

The numerical approach complements the experimental one in the sense that the flow characteristics are deeply analyzed where experiments suggest noise production. For the numerical approach, the turbulence modeling is quite important. In the past, some models were appreciated for their good prediction of some aerodynamic parameters as lift and drag for instance. The challenge is now to tune these models for a correct prediction of the noise sources. In the low subsonic range, the flow field is completely decoupled from acoustics, and noise sources can be computed from a purely hydrodynamic simulation before this information is transferred to an acoustical solver which will compute the acoustic field at the listener position. This post processing of the aerodynamic results is not obvious since it can introduce non-physical noise into the solution.

This project considers the aspect of noise generation in turbulent jets and especially the noise generated by vortex pairing, as it occurs for instance in jet flows. The axisymmetric version of the flow solver SFELES has been part of this PhD research, and numerical results obtained on the jet are similar to the experimental values. Analyses performed on the numerical results are interesting to go to complete turbulence modeling for aeroacoustics since vortex pairing is one of the basic acoustical processes in vortex dynamics.

Currently, a standard static Smagorinski model is used for turbulence modeling. However, this model has well known limitations, and its influence on the noise sources extracted from the flow field is not very clear. For this reason, it is planned to adopt a dynamic procedure in which the subgrid scale model automatically adapts to the flow. We planned also to perform simulations with the variational multiscale approach to better simulate the different interactions between large and unresolved scales. The commercial software ACTRAN distributed by Free Field Technologies is used for the computation of sound propagation inside the acoustic domain.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
3

Alkishriwi, Nouri [Verfasser]. "Large Eddy Simulation of Low Mach Number Flows / Nouri Alkishriwi." Aachen : Shaker, 2007. http://d-nb.info/1164341499/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holmberg, Andreas. "Experimental Determination of Aeracoustic Sources in Low Mach Number Internal Flows." Licentiate thesis, KTH, MWL Strömningsakustik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26133.

Full text
Abstract:
In this thesis, the in-duct experimental methods for determining aeroacoustic N-ports of in-duct elements are discussed and improved. The scattering matrix determination methods and the related wave decomposition methods are evaluated from measurements in an empty duct carrying a mean flow. The improvements of a new over-determination method for the source part of the N-port is studied using simulations and measurements; in quiescent air as well as measurements of the flow associated noise of a mixer plate, here a triangular plate inserted at an angle in a duct. The new method is shown to improve suppression of random errors while no improvement is achieved for bias errors.   Further, the methods are applied in the study of two different aeroacoustic phenomena; one is the effect on the flow associated noise of the triangular plate achieved by varying the bending stiffness. For the most resilient plate tested, it is observed that when the Strouhal number of the flow noise coalesce with the Helmholtz number of a specific eigen-mode of the plate, the noise is drastically dampened. There is also a weaker broad band effect.   The other phenomena studied is the amplification and attenuation obtained for sound waves propagating in a T-junction of rectangular ducts. It is found that by adding only 10% of inflow in the side branch relative to that in the main branch, the amplification is heavily increased. By adding another 10% the amplification is again similar to that of no side branch flow. Adding further flow lessens the effects still.
QC 20101118
Experimental characterization of aero-acoustic sources
APA, Harvard, Vancouver, ISO, and other styles
5

Weng, Chenyang. "Modeling of sound-turbulence interaction in low-Mach-number duct flows." Licentiate thesis, KTH, MWL Strömningsakustik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129319.

Full text
Abstract:
When sound waves propagate in a duct in the presence of turbulent flow, tur- bulent mixing can cause extra attenuation of the sound waves in addition to that caused by the viscothermal eects. Experiments show that compared to the vis- cothermal eects, turbulent absorption becomes the dominant contribution to the sound attenuation at suciently low frequencies. The mechanism of this turbulent absorption is attributed to the turbulent stress and the turbulent heat transfer act- ing on the coherent perturbations (including to sound waves) near the duct wall, i.e. sound-turbulence interaction. The purpose of the current investigation is to understand the mechanism of the sound-turbulence interaction in low-Mach-number internal flows by means of theoretical modeling and numerical simulation. The turbulence absorption can be modeled through perturbation turbulent Reynolds stresses and perturbation turbu- lent heat flux in the linearized perturbation equations. In this thesis, the linearized perturbation equations are reviewed, and dierent models for the turbulent absorp- tion of the sound waves are investigated. In addition, a new non-equilibrium model for the perturbation turbulent Reynolds stress is proposed. The proposed model is validated by comparing the computed perturbation fields with experimental data from turbulent pipe flow measurements, and large eddy simulations (LES) of turbu- lent channel flow. Good agreements are observed. Besides the theoretical modeling, LES is also carried out as a numerical investi- gation of the sound-turbulence interaction. Some preliminary results from the LES are presented.
Vid ljudutbredning i kanaler med turbulent flöde kan diusion som orsakas av turbulens ge extra dämpning av ljudvågor utöver den som orsakas av viskoter- miska eekter. Experiment visar att vid låga frekvenser ger denna absorption det dominerande bidraget till ljuddämpning. Mekanismen för denna absorption är tur- bulensens inverkan på koherenta störningar, bland annat ljudvågor, dvs ljud - tur- bulensinteraktion. Syftet med denna undersökning är att förstå mekanismen för ljud - turbulensin- teraktion i internströmning vid låga Machtal med hjälp av teoretisk modellering och numeriska simuleringar. Ljudabsorption pga turbulens kan modelleras via mod- ellering av störningar av de turbulenta Reynoldska spänningarna och störningar i den turbulenta värmetransporten i de linjäriserade störningsekvationerna. I denna avhandling går vi igenom de linjäriserade störningsekvationerna, och olika modeller för turbulent absorption av ljudvågor utreds. Dessutom presenteras en ny icke- jämviktsmodell för små störningar av de turbulenta Reynoldska spänningarna. Den föreslagna modellen utvärderas genom att de beräknade störningsfältet jämförs med experimentella data från mätningar i rör med turbulent strömning, samt med Large Eddy Simulations (LES) av turbulent strömning. God överensstämmelse kan visas. Förutom teoretisk modellering, kommer LES också att användas för att numeriskt undersöka ljud - turbulensinteraktion. Några preliminära resultat från LES presen- teras.

QC 20130927

APA, Harvard, Vancouver, ISO, and other styles
6

Huval, Danny J. "Heat transfer in variable density, low mach number, stagnating turbulent flows." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zucchini, Marco. "Experimental and numerical aeroacoustic investigation of impinging flows at low Mach number." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-31104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weng, Chenyang. "Theoretical and numerical studies of sound propagation in low-Mach-number duct flows." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168031.

Full text
Abstract:
When sound waves propagate in a duct in the presence of turbulent flow, turbulent mixing can cause attenuation of the sound waves extra to that caused by the viscothermal effects. Experiments show that compared to the viscothermal effects, this turbulent absorption becomes the dominant contribution to the sound attenuation at sufficiently low frequencies. The mechanism of this turbulent absorption is attributed to the turbulent stress and the turbulent heat transfer acting on the coherent perturbations (including the sound waves) near the duct wall, i.e. sound-turbulence interaction. The purpose of the current investigation is to understand the mechanism of the sound-turbulence interaction in low-Mach-number internal flows by theoretical modeling and numerical simulations. The turbulence absorption can be modeled through perturbation turbulent Reynolds stresses and perturbation turbulent heat flux in the linearized perturbation equations. In this thesis, the linearized perturbation equations are reviewed, and different models for the turbulent absorption of the sound waves are investigated. A new non–equilibrium model for the perturbation turbulent Reynolds stress is also proposed. The proposed model is validated by comparing with experimental data from the literature, and with the data from Direct Numerical Simulations (DNS) of pulsating turbulent channel flow. Good agreement is observed.

QC 20150526

APA, Harvard, Vancouver, ISO, and other styles
9

Avila, Matías. "Nonlinear subgrid finite element models for low Mach number flows coupled with radiative heat transfer." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285809.

Full text
Abstract:
The general description of a fluid flow involves the solution of the compressible Navier-Stokes equations, a very complex problem whose mathematical structure is not well understood. It is widely accepted that these equations provide an accurate description of any problem in fluid mechanics which may present many different nonlinear physical mechanisms. Depending on the physics of the problem under consideration, different simplified models neglecting some physical mechanisms can be derived from asymptotic analysis. On the other hand, radiative heat transfer can strongly interact with convection in high temperature flows, and neglecting its effects may have significant consequences in the overall predictions. Problems as fire scenarios emphasized the need for an evaluation of the effect of radiative heat transfer. This work is directed to strongly thermally coupled low Mach number flows with radiative heat transfer. The complexity of these mathematical problem makes their numerical solution very difficult. Despite the important difference in the treatment of the incompressibility, the low Mach number equations present the same mathematical structure as the incompressible Navier-Stokes equations, in the sense that the mechanical pressure is determined from the mass conservation constraint. Consequently the same type of numerical instabilities can be found, namely, the problem of compatibility conditions between the velocity and pressure finite element spaces, and the instabilities due to convection dominated flows. These instabilities can be avoided by the use of stabilization techniques. Many stabilization techniques used nowadays are based on the variational multiscale method, in which a decomposition of the approximating space into a coarse scale resolvable part and a fine scale subgrid part is performed. The modeling of the subgrid scale and its influence leads to a modified coarse scale problem providing stability. The quality of the final approximation (accuracy, efficiency) depends on the particular model. The extension of these techniques to nonlinear and coupled problems is presented. The distinctive features of our approach are to consider the subscales as transient and to keep the scale splitting in all the nonlinear terms appearing in the finite element equations and in the subgrid scale model. The first ingredient permits to obtain an improved time discretization scheme(higher accuracy, better stability). The second ingredient permits to prove global conservation properties, being also responsible of the higher accuracy of the method. This ingredient is intimately related to the problem of thermal turbulence modeling from a strictly numerical point of view. The capability for the simulation of turbulent flows is a measure of the ability of modeling the effect of the subgrid flow structures over the coarser ones. The performance of the model in predicting the behavior of turbulent flows is demonstrated. The radiation transport equation has been also approximated within the variational multiscale framework, the design and analysis of stabilized finite element methods is presented.
La descripción general del movimiento de un flujo implica la solución de las ecuaciones de Navier-Stokes compresibles, un problema de muy compleja estructura matemática. Estas ecuaciones proporcinan una descripción detallada de cualquier problema en mecánica de fluidos, que puede presentar distintos mecanismos no lineales que interactúan entre si. En función de la física del problema que se esté considerando, pueden derivarse modelos simplificados de las ecuaciones de Navier-Stokes mediante analisis dimensional, que ignoran algunos fenómenos físicos. Por otro lado, la transferencia de calor por radiación puede interactuar con el movimiento de un fluido, e ignorar sus efectos puede tener consecuencias importantes en las predicciones del flujo. Problemas donde hay fuego implican la evaluacion del efecto del calor por radiación. El presente trabajo está dirigido a flujos a bajo número de Mach térmicamente acoplados, donde el calor por radiación afecta al flujo. Debido a la complejidad del problema matemático, la solución numérica es muy complicada. A pesar de las diferencia en el tratamiento de la incompresibilidad, las ecuaciones de flujo a bajo número de Mach poseen una estructura matemática similar a la de flujo incompresible, en el sentido que la presión mecánica se determina a partir de la ecuación de conservación de la masa. En consecuencia poseen el mismo tipo de inestabilidades numéricas, que son el problema de condiciones de compatibilidad entre los espacios de elementos finitos de velocidad y presión, y las inestabilidades debidas a flujos con convección dominante. Estas inestabilidades pueden evitarse mediante técnicas de estabilización numérica. Muchos métodos de estabilización utilizados hoy día se basan en el método de multiscalas variacionales, donde el espacio funcional de la solucion se divide en un espacio discreto y resolubre y un espacio infinito de subscalas. El modelado de las subescalas y su influencia modifican el problema discreto proporcionando estabilidad. La calidad de la aproximación numérica final (precisión, eficiencia) depende del modelo particular de subescalas. En este trabajo se extienden estas técnicas de estabilización a problemas no lineales y acoplados. Las características que distinguen a nuestra aproximación son considerar las subsecalas como transitorias y mantener la división de escalas en todos los términos no lineales que aparecen en las ecuaciones de elementros finitos y en las del modelo de subescalas. La primera característica permite obtener mayor precisión y mejor estabilidad en la solución, la segunda característica permite obtener esquemas donde las propiedades se conservan globalmente, y mayor precisión del método. El hecho de mantener la división de escalas en todos los términos no lineales está intimamemte relacionado con el modelado de turbulencia en flujos térmicamente acoplados desde un punto de vista estrictamente numérico. La capacidad de simulación de flujo turbulento es una medida de la habilidad de modelar el efecto de las estructuras de escala fina sobre las estructuras de escala gruesa. Se muestra en esta tesis el desempeño del método para de predecir flujo turbulento. La ecuación de transporte de radiación también se aproxima numéricamente en el marco de multiscala variacional. El diseño y análisis de este método se presenta en detalle en esta tesis
APA, Harvard, Vancouver, ISO, and other styles
10

Kierkegaard, Axel. "Numerical investigations of generation and propagation of sound waves in low mach number internal flows /." Stockholm : Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9388.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Low-Mach number flows"

1

Jens, Lorenz, and United States. National Aeronautics and Space Administration., eds. Boundary conditions and the simulation of low Mach number flows. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hicks, R. M. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers. [Moffett Field, Calif: Ames Research Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pletcher, R. H. On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hydro and Aeroacoustics of Low Mach Number Flows. Elsevier Science & Technology Books, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Devenport, William, and Stewart Glegg. Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement. Elsevier Science & Technology Books, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement. Elsevier Science & Technology Books, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement. Elsevier Science & Technology, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Preconditioning for numerical simulation of low Mach number three-dimensional viscous turbomachinery flows. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cowles, Lisa J. High Reynolds number, low Mach number, steady flow field calculations over a NACA 0012 airfoil using Navier-Stokes and Interactive Boundary Layer theory. 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Low-Mach number flows"

1

Zeytounian, Radyadour Kh. "Incompressible Limit: Low Mach Number Asymptotics." In Theory and Applications of Viscous Fluid Flows, 165–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10447-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zeytounian, Radyadour Kh. "Low Mach Number Flow and Acoustics Equations." In Theory and Applications of Nonviscous Fluid Flows, 171–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56215-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Almgren, Ann, John Bell, Andrew Nonaka, and Michael Zingale. "Low Mach Number Modeling of Stratified Flows." In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 3–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Crighton, D. G. "Computational Aeroacoustics for Low Mach Number Flows." In ICASE/NASA LaRC Series, 50–68. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8342-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kh. Zeytounian, Radyadour. "Some Aspects of Low-Mach-Number External Flows." In Topics in Hyposonic Flow Theory, 77–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11414346_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kh. Zeytounian, Radyadour. "Some Aspects of Low-Mach-Number Internal Flows." In Topics in Hyposonic Flow Theory, 115–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11414346_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zeytounian, Radyadour. "Models Derived from the Theory of Low Mach Number Flows." In Asymptotic Modeling of Atmospheric Flows, 263–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iampietro, David, Frédéric Daude, Pascal Galon, and Jean-Marc Hérard. "A Weighted Splitting Approach for Low-Mach Number Flows." In Springer Proceedings in Mathematics & Statistics, 3–11. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57394-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Layton, William, and Antonín Novotný. "On Lighthill’s Acoustic Analogy for Low Mach Number Flows." In New Directions in Mathematical Fluid Mechanics, 247–79. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0152-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steelant, J., E. Dick, and S. Pattijn. "Analysis of Multigrid Efficiency for Viscous Low Mach Number Flows." In Lecture Notes in Computational Science and Engineering, 289–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58734-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Low-Mach number flows"

1

Gardner, A. D., and K. Richter. "Boundary Layer Transition Determination for Periodic and Static Flows using Phase-Averaged Pressure Data." In Vertical Flight Society 71st Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10091.

Full text
Abstract:
A method of boundary layer transition measurement is presented for wind tunnel models instrumented with surface pressure taps. The measurement relies on taking a number of theoretically identical measurements at different times and then analysing the standard deviation of the pressures. Due to the slight unsteady movement of the transition position, a peak in the standard deviation of pressure σCPpeak is found at the transition position, and this is correlated with measurements of the transition position with an infrared camera and hot film anemometers. In contrast to microphone measurements, it is shown that the transition detection works for data which has been low-pass filtered with a cutoff of 1 Hz. The application to static and dynamic transition measurements on static and periodically pitching helicopter rotor blade airfoils at Mach 0.3-0.5 is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
2

Lapenna, Pasquale E., Rachele Lamioni, Pietro Paolo Ciottoli, and Francesco Creta. "Low-Mach number simulations of transcritical flows." In 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DWYER, HARRY. "Calculation of low Mach number reacting flows." In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sachdev, Jai, Ashvin Hosangadi, and V. Sankaran. "Improved Flux Formulations for Unsteady Low Mach Number Flows." In 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roller, Sabine, and Claus-Dieter Munz. "The multiple pressure variables method for low Mach number flows." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LOHNER, RAINALD, and GOPAL PATNAIK. "BIC-FEM-FCT - An algorithm for low Mach-number flows." In 8th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Issa, Leila, and Issam Lakkis. "Reduced Order Models of Low Mach Number Isothermal Flows in Microchannels." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73150.

Full text
Abstract:
We present reduced order models of unsteady low Mach number isothermal ideal gas flows in two-dimensional rectangular microchannels subject to first order slip boundary conditions. The Navier-Stokes equations are simplified using Low Mach Number expansions of the pressure and velocity fields. This approximation allows decoupling the density from spatial pressure variations, thus simplifying the momentum equation. The resulting diffusion equation and the subsequent pressure-flow-rate relationship enables modeling the flow using analog circuit components. The accuracy of the proposed models is investigated for steady and unsteady flows in a two-dimensional channel for different values of Reynolds and Knudsen numbers.
APA, Harvard, Vancouver, ISO, and other styles
8

Kent, J. C., and A. Mikulec. "Visualization of low mach number gas flows using water analog simulation." In ICALEO® ‘88: Proceedings of the Optical Methods in Flow & Particle Diagnostics Conference. Laser Institute of America, 1988. http://dx.doi.org/10.2351/1.5057976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kierkegaard, Axel, and Gunilla Efraimsson. "Generation and Propagation of Sound Waves in Low Mach Number Flows." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Camussi, Roberto, Giulio Guj, Francesco Tomassi, Pengyuan Yao, Aldo Pieroni, and Renata Sisto. "Air Injection Through Microjets in Low Mach Number Turbulent Jet Flows." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3644.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Low-Mach number flows"

1

Pousin, Jerome G., Habib N. Najm, and Philippe Pierre Pebay. A half-explicit, non-split projection method for low Mach number flows. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/919179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Winters, W. S., G. H. Evans, and C. D. Moen. CURRENT - A Computer Code for Modeling Two-Dimensional, Chemically Reaccting, Low Mach Number Flows. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/459961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ramshaw, J. D., P. J. O'Rourke, and A. A. Amsden. Acoustic damping for explicit calculations of fluid flow at low Mach number. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6100813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Howe, M. S. Trailing Edge Noise Evaluated at Very Low Mach Number from Incompressible Flow Simulations. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada361764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McHugh, P. R. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/130602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography