Dissertations / Theses on the topic 'Low-light images'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Low-light images.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
McKoen, K. M. H. H. "Digital restoration of low light level video images." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343720.
Full textSankaran, Sharlini. "The influence of ambient light on the detectability of low-contrast lesions in simulated ultrasound images." Ohio : Ohio University, 1999. http://www.ohiolink.edu/etd/view.cgi?ohiou1175627273.
Full textАвраменко, Віктор Васильович, Виктор Васильевич Авраменко, Viktor Vasylovych Avramenko, and К. Salnik. "Recognition of fragments of standard images at low light level and the presence of additive impulsive noise." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/55739.
Full textLandin, Roman. "Object Detection with Deep Convolutional Neural Networks in Images with Various Lighting Conditions and Limited Resolution." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300055.
Full textDatorseende är en nyckelkomponent i alla autonoma system. Applikationer för datorseende i realtid är beroende av en korrekt detektering och klassificering av objekt. En detekteringsalgoritm som inte kan garantera rimlig noggrannhet är inte tillämpningsbar i realtidsscenarier, där huvudmålet är säkerhet. Faktorer som påverkar detekteringsnoggrannheten är belysningförhållanden och bildupplösning. Dessa bidrar till degradering av objekt och leder till låg klassificerings- och detekteringsnoggrannhet. Senaste utvecklingar av Convolutional Neural Networks (CNNs) -baserade algoritmer erbjuder möjligheter för förbättring av bilder med dålig belysning och bildgenerering med superupplösning vilket gör det möjligt att kombinera sådana modeller för att förbättra bildkvaliteten och öka detekteringsnoggrannheten. I denna uppsats utvärderas olika CNN-modeller för superupplösning och förbättring av bilder med dålig belysning genom att jämföra genererade bilder med det faktiska data. För att kvantifiera inverkan av respektive modell på detektionsnoggrannhet utvärderades en detekteringsprocedur på genererade bilder. Experimentella resultat utvärderades på bilder utvalda från NoghtOwls och Caltech datauppsättningar för fotgängare och visade att bildgenerering med superupplösning och bildförbättring i svagt ljus förbättrar noggrannheten med en betydande marginal. Dessutom har det bevisats att en kaskad av superupplösning-generering och förbättring av bilder med dålig belysning ytterligare ökar noggrannheten. Den största nackdelen med sådana kaskader är relaterad till en ökad beräkningstid som begränsar möjligheterna för en rad realtidsapplikationer.
Vorhies, John T. "Low-complexity Algorithms for Light Field Image Processing." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590771210097321.
Full textMiller, Sarah Victoria. "Mulit-Resolution Aitchison Geometry Image Denoising for Low-Light Photography." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1596444315236623.
Full textZhao, Ping. "Low-Complexity Deep Learning-Based Light Field Image Quality Assessment." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25977.
Full textAnzagira, Leo. "Imaging performance in advanced small pixel and low light image sensors." Thesis, Dartmouth College, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10144602.
Full textEven though image sensor performance has improved tremendously over the years, there are two key areas where sensor performance leaves room for improvement. Firstly, small pixel performance is limited by low full well, low dynamic range and high crosstalk, which greatly impact the sensor performance. Also, low light color image sensors, which use color filter arrays, have low sensitivity due to the selective light rejection by the color filters. The quanta image sensor (QIS) concept was proposed to mitigate the full well and dynamic range issues in small pixel image sensors. In this concept, spatial and temporal oversampling is used to address the full well and dynamic range issues. The QIS concept however does not address the issue of crosstalk. In this dissertation, the high spatial and temporal oversampling of the QIS concept is leveraged to enhance small pixel performance in two ways. Firstly, the oversampling allows polarization sensitive QIS jots to be incorporated to obtain polarization information. Secondly, the oversampling in the QIS concept allows the design of alternative color filter array patterns for mitigating the impact of crosstalk on color reproduction in small pixels. Finally, the problem of performing color imaging in low light conditions is tackled with a proposed stacked pixel concept. This concept which enables color sampling without the use of absorption color filters, improves low light sensitivity. Simulations are performed to demonstrate the advantage of this proposed pixel structure over sensors employing color filter arrays such as the Bayer pattern. A color correction algorithm for improvement of color reproduction in low light is also developed and demonstrates improved performance.
Hurle, Bernard Alfred. "The charge coupled device as a low light detector in beam foil spectroscopy." Thesis, University of Kent, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332296.
Full textRaventos, Joaquin. "New Test Set for Video Quality Benchmarking." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1226.
Full textScrofani, James William. "An adaptive method for the enhanced fusion of low-light visible and uncooled thermal infrared imagery." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA334031.
Full textMalik, Sameer. "Low Light Image Restoration: Models, Algorithms and Learning with Limited Data." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6120.
Full textWang, Szu-Chieh, and 王思傑. "Extreme Low Light Image Enhancement with Generative Adversarial Networks." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/cz8pqb.
Full text國立臺灣大學
資訊工程學研究所
107
Taking photos under low light environments is always a challenge for current imaging pipelines. Image noise and artifacts corrupt the image. Tak- ing the great success of deep learning into consideration recently, it may be straightforward to train a deep convolutional network to perform enhance- ment on such images to restore the underlying clean image. However, the large number of parameters in deep models may require a large amount of data to train. For the low light image enhancement task, paired data requires a short exposure image and a long exposure image to be taken with perfect alignment, which may not be achievable in every scene, thus limiting the choice of possible scenes to capture paired data and increasing the effort to collect training data. Also, data-driven solutions tend to replace the entire camera pipeline and cannot be easily integrated to existing pipelines. There- fore, we propose to handle the task with our 2-stage pipeline, consisting of an imperfect denoise network, and a bias correction net BC-UNet. Our method only requires noisy bursts of short exposure images and unpaired long expo- sure images, relaxing the effort of collecting training data. Also, our method works in raw domain and is capable of being easily integrated into the ex- isting camera pipeline. Our method achieves comparable improvements to other methods under the same settings.
Chen, Hsueh-I., and 陳學儀. "Deep Burst Low Light Image Enhancement with Alignment, Denoising and Blending." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/sfk685.
Full text國立臺灣大學
資訊網路與多媒體研究所
106
Taking photos under low light environment is always a challenge for most camera. In this thesis, we propose a neural network pipeline for processing burst short-exposure raw data. Our method contains alignment, denoising and blending. First, we use FlowNet2.0 to predict the optical flow between burst images and align these burst images. And then, we feed the aligned burst raw data into a DenoiseUNet, which includes denoise-part and color-part, to generate an RGB image. Finally, we use a MaskUNet to generate a mask that can distinguish misalignment. We blend the outputs from single raw image and from burst raw images by the mask. Our method proves that using burst inputs has significantly improvement than single input.
Chen, Chih-Ming, and 陳知名. "FPGA-based Real-time Low-Light Image Enhancement for Side-Mirror System." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/75th2h.
Full text國立臺北科技大學
電子工程系
106
In recent years, camera and display are widely used on vehicle. Because the camera wide angle is greater than the field of the lens-view, traditional side-mirror gradually replaced by camera and display. When driving at night, the images always suffer from low visibility when captures in low-light conditions, so driver and pedestrians are in danger. In this paper, design of PCB circuit to connect two motor control modules and side-mirror control lines to integrate FPGA, and presents a high-speed method to enhanced low-light image. The proposed brightnss enhanced algorithm is based on YUV space using non-linear transfers function and implemented on hardware for Xilinx ZedBoard to achieve the requirements of 25fps. The software algorithm execution time and brightness enhanced image LOE (Lightness-Order-Error) are used as performance evaluation. Compared with the proposed brightnss enhanced algorithm and others enhanced algorithms, the parameter of execution time and LOE can reduce by up to 97.5%, and 77%, respectively.
"High Speed CMOS Image Sensor." Master's thesis, 2016. http://hdl.handle.net/2286/R.I.40301.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2016
Chen, Ming-Wei, and 陳明偉. "A Novel Log-Lin-Log Response CMOS Image sensor with High Low-light Sensitivity and High Dynamic Range." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/52347884012525449141.
Full text元智大學
電機工程學系
96
A novel CMOS image sensor with log-lin-log response is presented. The pixel cell has logarithmic response in very low illumination intensity, linear response in low and medium illumination intensity, and logarithmic response in high illumination. In this scheme, the sensor is highly sensitive to very low light, while still owning the properties of high voltage swing of 0.53V (from 1.8V supply) and high dynamic range of 120dB. Furthermore, CDS technique can be applied to the proposed sensor array to reduce the fixed pattern noise. For the purpose of demonstration, a prototyped image sensor array of 75x54 with readout circuit and CDS is designed and realized from 1.8V supply in the TSMC 0.35µm CMOS 2P4M standard process.
Goy, J. "Etude, conception, et réalisation d'un capteur d'image APS en technologie standard CMOS pour des applications faible flux de type viseur d'étoiles = Study, conception and fabrication of an APS image sensor in standard CMOS technology for low light level applications such as star trackers." Phd thesis, 2002. http://tel.archives-ouvertes.fr/tel-00002934.
Full texttechnologie du fait qu'elle est moins sensible aux radiations que les capteurs CCD, et qu'elle atteint à présent des coûts et des niveaux de bruit de lecture satisfaisants. Cette thèse explore les améliorations
qui peuvent être apportées aux capteur CMOS traditionnels afin de les rendre plus proches des contraintes requises pour l'utilisation spatiale. Ces améliorations concernent notamment l'étude de la partie photosensible (photodiode ou photoMOS), le choix d'une architecture de pixel permettant d'augmenter son gain intrinsèque tout en réduisant son bruit de lecture,
et la réalisation d'un système de balayage de la matrice avec possibilité de fenêtrage et de temps d'exposition programmable. Dans ce cadre, plusieurs solutions ont été fabriquées et testées, et les conclusions permettent de dresser une large vision des avantages et des inconvénients de chaque type de capteur.
Eloff, Corné. "Spatial technology as a tool to analyse and combat crime." Thesis, 2006. http://hdl.handle.net/10500/1193.
Full textCriminology
D.Litt. et Phil. (Criminology)