Journal articles on the topic 'Low energy electron diffraction'

To see the other types of publications on this topic, follow the link: Low energy electron diffraction.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Low energy electron diffraction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Silin, A. P. "Low-energy electron diffraction." Soviet Physics Uspekhi 31, no. 4 (April 30, 1988): 381. http://dx.doi.org/10.1070/pu1988v031n04abeh005759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rous, P. J. "Tensor low-energy electron diffraction." Journal of Physics: Condensed Matter 6, no. 40 (October 3, 1994): 8103–32. http://dx.doi.org/10.1088/0953-8984/6/40/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heinz, K., A. Seubert, and D. K. Saldin. "Holographic low-energy electron diffraction." Journal of Physics: Condensed Matter 13, no. 47 (November 12, 2001): 10647–63. http://dx.doi.org/10.1088/0953-8984/13/47/308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Starke, U., J. B. Pendry, and K. Heinz. "Diffuse low-energy electron diffraction." Progress in Surface Science 52, no. 2 (June 1996): 53–124. http://dx.doi.org/10.1016/0079-6816(96)00007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ichinokawa, T., Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa, and J. Kirchner. "Low energy scanning electron microscopy combined with low energy electron diffraction." Surface Science Letters 176, no. 1-2 (October 1986): A556. http://dx.doi.org/10.1016/0167-2584(86)91061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ichinokawa, T., Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa, and J. Kirschner. "Low energy scanning electron microscopy combined with low energy electron diffraction." Surface Science 176, no. 1-2 (October 1986): 397–414. http://dx.doi.org/10.1016/0039-6028(86)90184-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lynch, D. F., and A. E. Smith. "Electron diffraction phenomena for very low energy electrons." Acta Crystallographica Section A Foundations of Crystallography 43, a1 (August 12, 1987): C246. http://dx.doi.org/10.1107/s0108767387078887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Claus, H., A. Büssenschütt, and M. Henzler. "Low‐energy electron diffraction with energy resolution." Review of Scientific Instruments 63, no. 4 (April 1992): 2195–99. http://dx.doi.org/10.1063/1.1143138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qian, W., and J. C. H. Spence. "Theory of transmission low-energy electron diffraction." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 696–97. http://dx.doi.org/10.1017/s0424820100149313.

Full text
Abstract:
Interpretation of the images from a point source electron microscope requires a detailed analysis of transmission low energy electron diffraction. Here we present a general approach for solutions to the mixed Bragg-Laue case in transmission LEED (100-1000eV), based on the dynamical diffraction theory of Bethe. However, the validity of the dynamical diffraction theory to low energy electrons can be justified by its connection to the band theory for low energy crystal electrons.Assume that the incident beam forms a plane wave and the crystal is a thin slab. According to Bethe, the total electron wavefield within crystal can be written as a linear combination of Bloch waves (equation 1). The Bloch wave excitation coefficients b(j) can be determined by matching the boundary conditions, the wave amplitudes Cg(j) and the wave vectors k(j) for each Bloch wave can be obtained by solving the time independent Schrodinger equations (equation 2).
APA, Harvard, Vancouver, ISO, and other styles
10

Nibbering, E. T. J. "Low-energy electron diffraction at ultrafast speeds." Science 345, no. 6193 (July 10, 2014): 137–38. http://dx.doi.org/10.1126/science.1256199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stachulec, K. "Spin polarized low energy electron diffraction (SPLEED)." Physica B+C 142, no. 3 (December 1986): 332–47. http://dx.doi.org/10.1016/0378-4363(86)90028-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Diehl, R. D., J. Ledieu, N. Ferralis, A. W. Szmodis, and R. McGrath. "Low-energy electron diffraction from quasicrystal surfaces." Journal of Physics: Condensed Matter 15, no. 3 (January 13, 2003): R63—R81. http://dx.doi.org/10.1088/0953-8984/15/3/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Over, H., M. Gierer, H. Bludau, G. Ertl, and S. Y. Tong. "Fingerprinting technique in low-energy electron diffraction." Surface Science 314, no. 2 (July 1994): 243–68. http://dx.doi.org/10.1016/0039-6028(94)90010-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jia, J. F., R. G. Zhao, and W. S. Yang. "Quasikinematic low-energy electron-diffraction surface crystallography." Physical Review B 48, no. 24 (December 15, 1993): 18101–8. http://dx.doi.org/10.1103/physrevb.48.18101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Stachulec, K., and A. Stachulec. "Temperature Dependence of Low Energy Electron Diffraction." physica status solidi (b) 141, no. 2 (June 1, 1987): K89—K92. http://dx.doi.org/10.1002/pssb.2221410228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Müller, Bert, and Martin Henzler. "Comparison of reflection high-energy electron diffraction and low-energy electron diffraction using high-resolution instrumentation." Surface Science 389, no. 1-3 (November 1997): 338–48. http://dx.doi.org/10.1016/s0039-6028(97)00447-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tromp, Ruud M. "Low-Energy Electron Microscopy." MRS Bulletin 19, no. 6 (June 1994): 44–46. http://dx.doi.org/10.1557/s0883769400036757.

Full text
Abstract:
For surface science, the 1980s were the decade in which the microscopes arrived. The scanning tunneling microscope (STM) was invented in 1982. Ultrahigh vacuum transmission electron microscopy (UHVTEM) played a key role in resolving the structure of the elusive Si(111)-7 × 7 surface. Scanning electron microscopy (SEM) as well as reflection electron microscopy (REM) were applied to the study of growth and islanding. And low-energy electron microscopy (LEEM), invented some 20 years earlier, made its appearance with the work of Telieps and Bauer.LEEM and TEM have many things in common. Unlike STM and SEM, they are direct imaging techniques, using magnifying lenses. Both use an aperture to select a particular diffracted beam, which determines the nature of the contrast. If the direct beam is selected (no parallel momentum transfer), a bright field image is formed, and contrast arises primarily from differences in the scattering factor. A dark field image is formed with any other beam in the diffraction pattern, allowing contrast due to differences in symmetry. In LEEM, phase contrast is the third important mechanism by which surface and interface features such as atomic steps and dislocations may be imaged. One major difference between TEM and LEEM is the electron energy: 100 keV and above in TEM, 100 eV and below in LEEM. In LEEM, the imaging electrons are reflected from the sample surface, unlike TEM where the electrons zip right through the sample, encountering top surface, bulk, and bottom surface. STM and TEM are capable of ~2 Å resolution, while LEEM and SEM can observe surface features (including atomic steps) with -100 Å resolution.
APA, Harvard, Vancouver, ISO, and other styles
18

Cao, Yijian, and Edward H. Conrad. "High q‐resolution electron gun for low energy electron diffraction." Review of Scientific Instruments 60, no. 8 (August 1989): 2642–45. http://dx.doi.org/10.1063/1.1140686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sawler, J., and D. Venus. "Electron polarimeter based on spin‐polarized low‐energy electron diffraction." Review of Scientific Instruments 62, no. 10 (October 1991): 2409–18. http://dx.doi.org/10.1063/1.1142256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Burch, Kathryn D., J. L. Huang, and Robert G. Greenler. "Optical simulation of low‐energy electron diffraction patterns." American Journal of Physics 53, no. 3 (March 1985): 237–42. http://dx.doi.org/10.1119/1.14130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wander, A., J. B. Pendry, and M. A. Van Hove. "Linear approximation to dynamical low-energy electron diffraction." Physical Review B 46, no. 15 (October 15, 1992): 9897–99. http://dx.doi.org/10.1103/physrevb.46.9897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Saldin, D. K., J. B. Pendry, M. A. Van Hove, and G. A. Somorjai. "Interpretation of diffuse low-energy electron diffraction intensities." Physical Review B 31, no. 2 (January 15, 1985): 1216–18. http://dx.doi.org/10.1103/physrevb.31.1216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Namba, Yoshikatsu, and Toshio Mōri. "Two‐grid Auger–low energy electron diffraction system." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, no. 4 (July 1986): 1884–87. http://dx.doi.org/10.1116/1.573740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hwang, Robert Q., Ellen D. Williams, and Robert L. Park. "A high‐resolution low‐energy electron diffraction instrument." Review of Scientific Instruments 60, no. 9 (September 1989): 2945–48. http://dx.doi.org/10.1063/1.1140632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kim, S. K., F. Jona, and J. A. Strozier. "Correction of experimental low-energy electron-diffraction intensities." Physical Review B 51, no. 19 (May 15, 1995): 13837–40. http://dx.doi.org/10.1103/physrevb.51.13837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nazarov, V. U., and S. Nishigaki. "Inelastic low energy electron diffraction at metal surfaces." Surface Science 482-485 (June 2001): 640–47. http://dx.doi.org/10.1016/s0039-6028(01)00784-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Delong, A., and V. Kolařík. "Selected area low energy electron diffraction and microscopy." Ultramicroscopy 17, no. 1 (1985): 67–72. http://dx.doi.org/10.1016/0304-3991(85)90178-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Galiy, P., T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber, and I. Yarovets’. "Scanning Tunneling Microscopy/Spectroscopy and Low-Energy Electron Diffraction Investigations of GaTe Layered Crystal Cleavage Surface." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 37, no. 6 (August 17, 2016): 789–801. http://dx.doi.org/10.15407/mfint.37.06.0789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tromp, R. M., M. Mankos, M. C. Reuter, A. W. Ellis, and M. Copel. "A New Low Energy Electron Microscope." Surface Review and Letters 05, no. 06 (December 1998): 1189–97. http://dx.doi.org/10.1142/s0218625x98001523.

Full text
Abstract:
Low energy electron microscopy (LEEM) has developed into one of the premier techniques for in situ studies of surface dynamical processes, such as epitaxial growth, phase transitions, chemisorption and strain relaxation phenomena. Over the last three years we have designed and constructed a new LEEM instrument, aimed at improved resolution, improved diffraction capabilities and greater ease of operation compared to present instruments.
APA, Harvard, Vancouver, ISO, and other styles
30

Vuorinen, J., K. Pussi, R. D. Diehl, and M. Lindroos. "Correlation of electron self-energy with geometric structure in low-energy electron diffraction." Journal of Physics: Condensed Matter 24, no. 1 (November 29, 2011): 015003. http://dx.doi.org/10.1088/0953-8984/24/1/015003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Omori, Shinji, and Yoshimasa Nihei. "Photoelectron diffraction intensity calculation by using tensor low-energy electron diffraction theory." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, no. 4 (July 1999): 1621–25. http://dx.doi.org/10.1116/1.581861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

TONG, S. Y., T. P. CHU, HUASHENG WU, and H. HUANG. "LOW-ENERGY ELECTRON HOLOGRAMS: PROPERTIES AND METHOD OF INVERSION." Surface Review and Letters 04, no. 03 (June 1997): 459–67. http://dx.doi.org/10.1142/s0218625x97000444.

Full text
Abstract:
We examine the differences between low-energy electron-diffraction patterns (holograms) and optical holograms. We show that electron-diffraction patterns in solids are not analogous to optical holograms because of strong dynamical factors. We also show that low-energy electron holograms can be inverted by a large-wave-number small-angle integral transformation. The grid sizes in wave number and angular spaces used in the transformation are derived.
APA, Harvard, Vancouver, ISO, and other styles
33

Tear, S. P. "Surface Crystallography: An Introduction to Low Energy Electron Diffraction." Physics Bulletin 36, no. 12 (December 1985): 506. http://dx.doi.org/10.1088/0031-9112/36/12/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Clarke, L. J., and Paul M. Marcus. "Surface Crystallography: An Introduction to Low Energy Electron Diffraction." Physics Today 40, no. 4 (April 1987): 83–84. http://dx.doi.org/10.1063/1.2819989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Suk Kyoung, Yun Fei Lin, Lu Yan, and Wen Li. "Laser-Induced Low Energy Electron Diffraction in Aligned Molecules." Journal of Physical Chemistry A 116, no. 8 (February 15, 2012): 1950–55. http://dx.doi.org/10.1021/jp210798c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Eden, V. L., and S. C. Fain. "Ethylene on graphite: A low-energy electron-diffraction study." Physical Review B 43, no. 13 (May 1, 1991): 10697–705. http://dx.doi.org/10.1103/physrevb.43.10697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lander, J. J., and J. Morrison. "LOW ENERGY ELECTRON DIFFRACTION STUDY OF SILICON SURFACE STRUCTURES." Annals of the New York Academy of Sciences 101, no. 3 (December 22, 2006): 605–26. http://dx.doi.org/10.1111/j.1749-6632.1963.tb54918.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Farnsworth, H. E. "LOW ENERGY ELECTRON DIFFRACTION FROM A CLEAVED GERMANIUM SURFACE*." Annals of the New York Academy of Sciences 101, no. 3 (December 22, 2006): 658–66. http://dx.doi.org/10.1111/j.1749-6632.1963.tb54922.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wander, A. "A new modular low energy electron diffraction package — DL_LEED." Computer Physics Communications 137, no. 1 (June 2001): 4–11. http://dx.doi.org/10.1016/s0010-4655(01)00168-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dorel, S., F. Pesty, and P. Garoche. "Oscillating low-energy electron diffraction for studying nanostructured surfaces." Surface Science 446, no. 3 (February 2000): 294–300. http://dx.doi.org/10.1016/s0039-6028(99)01158-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Wei, Dong Zhao, and D. Haneman. "Low-energy electron diffraction from heated porous silicon surfaces." Surface Science 448, no. 1 (March 2000): 40–48. http://dx.doi.org/10.1016/s0039-6028(99)01190-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ford, Wayne K. "Low-energy electron diffraction calculations using a parallel supercomputer." Surface Science Letters 292, no. 3 (August 1993): A614. http://dx.doi.org/10.1016/0167-2584(93)90892-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ford, Wayne K. "Low-energy electron diffraction calculations using a parallel supercomputer." Surface Science 292, no. 3 (August 1993): 342–48. http://dx.doi.org/10.1016/0039-6028(93)90339-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Materer, Nicholas F. "Layer stacking implementation of tensor low energy electron diffraction." Surface Science 491, no. 1-2 (September 2001): 131–39. http://dx.doi.org/10.1016/s0039-6028(01)01383-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wedler, Harald, and Klaus Heinz. "Information on Surface Structure by Low Energy Electron Diffraction." Vakuum in Forschung und Praxis 7, no. 2 (1995): 107–14. http://dx.doi.org/10.1002/vipr.19950070205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mizuno, Seigi, F. Rahman, and Masayuki Iwanaga. "Low-Energy Electron Diffraction Patterns Using Field-Emitted Electrons from Tungsten Tips." Japanese Journal of Applied Physics 45, No. 6 (February 3, 2006): L178—L179. http://dx.doi.org/10.1143/jjap.45.l178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bauer, E., A. Pavlovska, and I. S. T. Tsong. "In Situ Nitride Growth Studies by Low Energy Electron Microscopy (LEEM) and Low Energy Electron Diffraction (LEED)." Microscopy and Microanalysis 3, S2 (August 1997): 611–12. http://dx.doi.org/10.1017/s1431927600009946.

Full text
Abstract:
Nitride films play an increasing role in modern electronics, for example silicon nitride as insulating layer in Si-based devices or GaN in blue light emitting diodes and lasers. For this reason they have been the subject of many ex situ electron microscopic studies. A much deeper understanding of the growth of these important materials can be obtained by in situ studies. Although these could be done by SEM, LEEM combined with LEED is much better suited because of its excellent surface sensitivity and diffraction contrast. We have in the past studied the high temperture nitridation of Si(l11) by ammonia (NH3)and the growth of GaN and A1N films on Si(l11) and 6H-SiC(0001) by depositing Ga and Al in the presence of NH3 and will report some of the results of this work for comparison with more recent work using atomic nitrogen instead of NH3.
APA, Harvard, Vancouver, ISO, and other styles
48

Wu, Jinsong, and John C. H. Spence. "Low-Dose, Low-Temperature Convergent-Beam Electron Diffraction and Multiwavelength Analysis of Hydrocarbon Films by Electron Diffraction." Microscopy and Microanalysis 9, no. 5 (September 16, 2003): 428–41. http://dx.doi.org/10.1017/s1431927603030368.

Full text
Abstract:
Aromatic hydrocarbon (perylene, coronene) and tetracontane films are shown to produce useful convergent-beam electron diffraction (CBED) patterns under low-dose and low-temperature conditions. These were obtained using a Zeiss LEO-921 electron microscope with an omega energy filter at liquid helium and nitrogen temperatures. The usefulness of patterns showing CBED disks of constant intensity (“blank disks,” indicating kinematic scattering) for structure analysis is investigated, with the aim of avoiding film-bending artifacts. Using CBED patterns from thicker areas, sample thickness was experimentally determined using either two-beam or three-beam patterns. Koehler mode illumination (a new form of SAD pattern offering smaller areas) was also used, and the possibility of obtaining structure factor moduli using the kinematic and two-beam approximations was investigated by comparing measured diffraction intensities with experimental ones for these known structures. The commonly used approximation |F| ∼ Ig (intended to account for bending) was found to be a worse approximation than the two-beam approximation with well-defined excitation error for these microdiffraction experiments. A new multiwavelength method of retrieving structure factor moduli and thickness from microdiffraction patterns using two-beam theory is demonstrated for tetracontane.
APA, Harvard, Vancouver, ISO, and other styles
49

Rundgren, J. "Electron inelastic mean free path, electron attenuation length, and low-energy electron-diffraction theory." Physical Review B 59, no. 7 (February 15, 1999): 5106–14. http://dx.doi.org/10.1103/physrevb.59.5106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Usami, S., H. Nakai, T. Yaguchi, Y. Kumashiro, and A. Fujimori. "Auger electron spectroscopy–electron energy‐loss spectroscopy–low‐energy electron diffraction study of a V6C5(100) surface." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (July 1987): 985–88. http://dx.doi.org/10.1116/1.574307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography