To see the other types of publications on this topic, follow the link: Low Dimensional Quantum Spin Systems.

Books on the topic 'Low Dimensional Quantum Spin Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 46 books for your research on the topic 'Low Dimensional Quantum Spin Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Hayward, Carol Ann. Quantum mechanics in low-dimensional spin systems. Birmingham: University of Birmingham, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vanderstraeten, Laurens. Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64191-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Quantum theory of one-dimensional spin systems. Cambridge, UK: Cambridge Scientific Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seki, Shinichiro. Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54091-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

service), SpringerLink (Online, ed. Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Tokyo: Springer Japan, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bauer, Günther. Low-Dimensional Electronic Systems: New Concepts. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems (1988 Marbella, Spain). Optical switching in low-dimensional systems. New York: Plenum Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morandi, Giuseppe. Field Theories for Low-Dimensional Condensed Matter Systems: Spin Systems and Strongly Correlated Electrons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Giuseppe, Morandi, ed. Field theories for low-dimensional condensed matter systems: Spin systems and strongly correlated electrons. Berlin: Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1927-, Balkanski Minko, and Andreev Nikolai, eds. Advanced electronic technologies and systems based on low-dimensional quantum devices. Dordrecht: Kluwer Academic Publishers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Balkanski, Minko, and Nikolai Andreev, eds. Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8965-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

E, Brézin, and Wadia S. R, eds. The Large N expansion in quantum field theory and statistical physics: From spin systems to 2-dimensional gravity. Singapore: World Scientific, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Okiji, Ayao. Correlation Effects in Low-Dimensional Electron Systems: Proceedings of the 16th Taniguchi Symposium Kashikojima, Japan, October 25-29, 1993. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

ICONO '98 (1998 Moscow, Russia). ICONO '98: Quantum optics, interference phenomena in atomic systems, and high-precision measurements : 29 June-3 July 1998, Moscow, Russia. Edited by Andreev A. V, Scientific Council for Coherent and Nonlinear Optics (Rossiĭskai͡a akademii͡a nauk), and Russia (Federation). Ministerstvo nauki i tekhnologiĭ. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Vanderstraeten, Laurens. Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vanderstraeten, Laurens. Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Glazov, M. M. Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.

Full text
Abstract:
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, solid state systems, particularly semicon- ductors and semiconductor nanosystems, allow one to perform benchtop studies of quantum and relativistic phenomena. On the other hand, interest is supported by the prospects of realizing spin-based electronics where the electron or nuclear spins can play a role of quantum or classical information carriers. This book aims at rather detailed presentation of multifaceted physics of interacting electron and nuclear spins in semiconductors and, particularly, in semiconductor-based low-dimensional structures. The hyperfine interaction of the charge carrier and nuclear spins increases in nanosystems compared with bulk materials due to localization of electrons and holes and results in the spin exchange between these two systems. It gives rise to beautiful and complex physics occurring in the manybody and nonlinear system of electrons and nuclei in semiconductor nanosystems. As a result, an understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and control of spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and -Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focusing, as well as fluctuations of electron and nuclear spins.
APA, Harvard, Vancouver, ISO, and other styles
20

Seki, Shinichiro. Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Barnes, Crispin H. W. Quantum Transport Phenomena in Low-Dimensional Electron Systems. Cambridge University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barnes, Crispin H. W. Quantum Transport Phenomena in Low-Dimensional Electron Systems. Cambridge University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Low-Dimensional Nanoscale Systems on Discrete Spaces. World Scientific Publishing Company, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hüvonen, Dan. Terahertz spectroscopy of low-dimensional spin systems: Madalamõõduliste spinnsüsteemide terahertsspektroskoopia. Tallinn, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mathey, Ludwig G. Quantum phases of low-dimensional ultra-cold atom systems. 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zabrodin, Anton. Quantum spin chains and classical integrable systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0013.

Full text
Abstract:
This chapter is a review of the recently established quantum-classical correspondence for integrable systems based on the construction of the master T-operator. For integrable inhomogeneous quantum spin chains with gl(N)-invariant R-matrices in finite-dimensional representations, the master T-operator is a sort of generating function for the family of commuting quantum transfer matrices depending on an infinite number of parameters. Any eigenvalue of the master T-operator is the tau-function of the classical modified KP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0th time of the hierarchy. This implies a remarkable relation between the quantum spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, a system of algebraic equations can be obtained for the spectrum of the spin chain Hamiltonians.
APA, Harvard, Vancouver, ISO, and other styles
27

Balkanski, M. Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Andreev, Nikolai, and M. Balkanski. Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

(Editor), Hartmut Haug, and L. Banyai (Editor), eds. Optical Switching in Low-Dimensional Systems (NATO Science Series: B:). Springer, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Londergan, J. Timothy, David P. Murdock, and John P. Carini. Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals. Springer London, Limited, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Londergan, J. Timothy, David P. Murdock, and John P. Carini. Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Montangero, Simone. Introduction to Tensor Network Methods: Numerical simulations of low-dimensional many-body quantum systems. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Brezin, E. The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to 2-Dimensional Gravity. World Scientific Publishing Company, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Brezin, E. The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to 2-Dimensional Gravity. World Scientific Pub Co Inc, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Londergan, J. Timothy, David P. Murdock, and John P. Carini. Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals (Lecture Notes in Physics). Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Low-dimensional electronic systems: New concepts : proceedings of the Seventh International Winter School, Mauterndorf, Austria, February 24-28, 1992. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Correlation effects in low-dimensional electron systems: Proceedings of the 16th Taniguchi symposium, Kashikojima, Japan, October 25-29, 1993. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Low-Dimensional Electronic Systems: New Concepts : Proceedings of the Seventh International Winter School, Mauterndorf, Austria, February 24-28, 1992 (Springer Series in Solid-State Sciences). Springer, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tsaousidou, M. Thermopower of low-dimensional structures: The effect of electron–phonon coupling. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.13.

Full text
Abstract:
This article examines the effect of electron-phonon coupling on the thermopower of low-dimensional structures. It begins with a review of the theoretical approaches and the basic concepts regarding phonon drag under different transport regimes in two- and one-dimensional systems. It then considers the thermopower of two-dimensional semiconductor structures, focusing on phonon drag in semi-classical two-dimensional electron gases confined in semiconductor nanostructures. It also analyzes the influence of phonon drag on the thermopower of semiconductor quantum wires and describes the phonon-drag thermopower of doped single-wall carbon nanotubes. The article compares theory and experiment in order to demonstrate the role of phonon-drag and electron-phonon coupling in the thermopower in two and one dimensions.
APA, Harvard, Vancouver, ISO, and other styles
40

Eckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.

Full text
Abstract:
This book focuses on the theory of quantum matter, strongly interacting systems of quantum many–particle physics, particularly on their study using exactly solvable and quantum integrable models with Bethe ansatz methods. Part 1 explores the fundamental methods of statistical physics and quantum many–particle physics required for an understanding of quantum matter. It also presents a selection of the most important model systems to describe quantum matter ranging from the Hubbard model of condensed matter physics to the Rabi model of quantum optics. The remaining five parts of the book examines appropriate special cases of these models with respect to their exact solutions using Bethe ansatz methods for the ground state, finite–size, and finite temperature properties. They also demonstrate the quantum integrability of an exemplary model, the Heisenberg quantum spin chain, within the framework of the quantum inverse scattering method and through the algebraic Bethe ansatz. Further models, whose Bethe ansatz solutions are derived and examined, include the Bose and Fermi gases in one dimension, the one–dimensional Hubbard model, the Kondo model, and the quantum Tavis–Cummings model, the latter a model descendent from the Rabi model.
APA, Harvard, Vancouver, ISO, and other styles
41

(Editor), A. V. Andreev, Sergey N. Bagayev (Editor), Anatoliy S. Chirkin (Editor), and Vladimir I. Denisov (Editor), eds. Quantum Optics, Interference Phenomena in Atomic Systems, and High-Precision Measurements: 29 June-3 July 1998, Moscow, Russia (Icono '98). SPIE-International Society for Optical Engine, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Nikolic, Branislav K., Liviu P. Zarbo, and Satofumi Souma. Spin currents in semiconductor nanostructures: A non-equilibrium Green-function approach. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.24.

Full text
Abstract:
This article examines spin currents and spin densities in realistic open semiconductor nanostructures using different tools of quantum-transport theory based on the non-equilibrium Green function (NEGF) approach. It begins with an introduction to the essential theoretical formalism and practical computational techniques before explaining what pure spin current is and how pure spin currents can be generated and detected. It then considers the spin-Hall effect (SHE), and especially the mesoscopic SHE, along with spin-orbit couplings in low-dimensional semiconductors. It also describes spin-current operator, spindensity, and spin accumulation in the presence of intrinsic spin-orbit couplings, as well as the NEGF approach to spin transport in multiterminal spin-orbit-coupled nanostructures. The article concludes by reviewing formal developments with examples drawn from the field of the mesoscopic SHE in low-dimensional spin-orbit-coupled semiconductor nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
43

Horing, Norman J. Morgenstern. Quantum Statistical Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.001.0001.

Full text
Abstract:
The methods of coupled quantum field theory, which had great initial success in relativistic elementary particle physics and have subsequently played a major role in the extensive development of non-relativistic quantum many-particle theory and condensed matter physics, are at the core of this book. As an introduction to the subject, this presentation is intended to facilitate delivery of the material in an easily digestible form to students at a relatively early stage of their scientific development, specifically advanced undergraduates (rather than second or third year graduate students), who are mathematically strong physics majors. The mechanism to accomplish this is the early introduction of variational calculus with particle sources and the Schwinger Action Principle, accompanied by Green’s functions, and, in addition, a brief derivation of quantum mechanical ensemble theory introducing statistical thermodynamics. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green’s function equations of motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and non-equilibrium Green’s functions, and their associated spectral representations and approximation procedures. Phenomenology emerging in these discussions includes quantum plasma dynamic, nonlocal screening, plasmons, polaritons, linear electromagnetic response, excitons, polarons, phonons, magnetic Landau quantization, van der Waals interactions, chemisorption, etc. Considerable attention is also given to low-dimensional and nanostructured systems, including quantum wells, wires, dots and superlattices, as well as materials having exceptional conduction properties such as superconductors, superfluids and graphene.
APA, Harvard, Vancouver, ISO, and other styles
44

Blamire, M. G., and J. W. A. Robinson. Superconducting Spintronics and Devices. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.14.

Full text
Abstract:
This article reviews the current status of superconducting spintronics and devices, with particular emphasis on the critical issues and developments needed for their application to low-power quantum computing. It first provides an overview of conventional spintronics before discussing the rationale for superconducting spintronics. It then considers the proximity effects and Josephson junctions in superconductor-ferromagnet heterostructures, along with spin transport in the superconducting state. It also examines the issue of memory in superconducting spintronics, especially with respect to reading and writing magnetic data via superconducting states, and how to generate memory logic in such devices. Finally, it evaluates the potential application of superconductor-ferromagnetic insulator devices as thermoelectric systems in low-temperature electronic circuits.
APA, Harvard, Vancouver, ISO, and other styles
45

McDuff, Dusa, and Dietmar Salamon. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0001.

Full text
Abstract:
Symplectic topology has a long history. It has its roots in classical mechanics and geometric optics and in its modern guise has many connections to other fields of mathematics and theoretical physics ranging from dynamical systems, low-dimensional topology, algebraic and complex geometry, representation theory, and homological algebra, to classical and quantum mechanics, string theory, and mirror symmetry. One of the origins of the subject is the study of the equations of motion arising from the Euler–Lagrange equations of a one-dimensional variational problem. The Hamiltonian formalism arising from a Legendre transformation leads to the notion of a ...
APA, Harvard, Vancouver, ISO, and other styles
46

Narlikar, A. V., ed. The Oxford Handbook of Small Superconductors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.001.0001.

Full text
Abstract:
This handbook examines cutting-edge developments in research and applications of small or mesoscopic superconductors, offering a glimpse of what might emerge as a giga world of nano superconductors. Contributors, who are eminent frontrunners in the field, share their insights on the current status and great promise of small superconductors in the theoretical, experimental, and technological spheres. They discuss the novel and intriguing features and theoretical underpinnings of the phenomenon of mesoscopic superconductivity, the latest fabrication methods and characterization tools, and the opportunities and challenges associated with technological advances. The book is organized into three parts. Part I deals with developments in basic research of small superconductors, including local-scale spectroscopic studies of vortex organization in such materials, Andreev reflection and related studies in low-dimensional superconducting systems, and research on surface and interface superconductivity. Part II covers the materials aspects of small superconductors, including mesoscopic effects in superconductor–ferromagnet hybrids, micromagnetic measurements on electrochemically grown mesoscopic superconductors, and magnetic flux avalanches in superconducting films with mesoscopic artificial patterns. Part III reviews the current progress in the device technology of small superconductors, focusing on superconducting spintronics and devices, barriers in Josephson junctions, hybrid superconducting devices based on quantum wires, superconducting nanodevices, superconducting quantum bits of information, and the use of nanoSQUIDs in the investigation of small magnetic systems.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography