Academic literature on the topic 'Lorentz Violations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lorentz Violations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lorentz Violations"
Jentschura, Ulrich D. "Squeezing the Parameter Space for Lorentz Violation in the Neutrino Sector with Additional Decay Channels." Particles 3, no. 3 (August 26, 2020): 630–41. http://dx.doi.org/10.3390/particles3030041.
Full textHashimoto, Koji. "Lorentz violation and vacuum structure in string theories." International Journal of Modern Physics: Conference Series 30 (January 2014): 1460274. http://dx.doi.org/10.1142/s2010194514602749.
Full textBailey, Quentin G. "Lorentz violation and gravity." Proceedings of the International Astronomical Union 5, S261 (April 2009): 409–13. http://dx.doi.org/10.1017/s1743921309990706.
Full textMewes, Matthew. "Non-Minimal Lorentz Violation in Macroscopic Matter." Symmetry 12, no. 12 (December 7, 2020): 2026. http://dx.doi.org/10.3390/sym12122026.
Full textMoura, Celio A., and Fernando Rossi-Torres. "Searches for Violation of CPT Symmetry and Lorentz Invariance with Astrophysical Neutrinos." Universe 8, no. 1 (January 11, 2022): 42. http://dx.doi.org/10.3390/universe8010042.
Full textHalprin, Arthur, and Hang Bae Kim. "Mapping Lorentz invariance violations into equivalence principle violations." Physics Letters B 469, no. 1-4 (December 1999): 78–80. http://dx.doi.org/10.1016/s0370-2693(99)01258-7.
Full textVoss, D. "PHYSICS: Looking for Lorentz Violations." Science 315, no. 5812 (February 2, 2007): 574d—575d. http://dx.doi.org/10.1126/science.315.5812.574d.
Full textSantos, A. F., and Faqir C. Khanna. "Lorentz violation, gravitoelectromagnetic field and Bhabha scattering." International Journal of Modern Physics A 33, no. 02 (January 20, 2018): 1850015. http://dx.doi.org/10.1142/s0217751x1850015x.
Full textCortés, J. L., and Justo López-Sarrión. "Fine-tuning problems in quantum field theory and Lorentz invariance: A scalar-fermion model with a physical momentum cutoff." International Journal of Modern Physics A 32, no. 15 (May 23, 2017): 1750084. http://dx.doi.org/10.1142/s0217751x17500841.
Full textMACCIONE, LUCA, ANDREA M. TAYLOR, DAVID M. MATTINGLY, and STEFANO LIBERATI. "ULTRA-HIGH-ENERGY COSMIC RAYS AND PLANCK-SUPPRESSED LORENTZ INVARIANCE VIOLATION." International Journal of Modern Physics D 18, no. 10 (October 2009): 1621–25. http://dx.doi.org/10.1142/s0218271809015527.
Full textDissertations / Theses on the topic "Lorentz Violations"
Valcárcel, Luis 1979. "Gravitational Lorentz violations in 5D black hole background : a numerical investigation." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80891.
Full textPihan-Le, Bars Hélène. "Des horloges atomiques à la mission MICROSCOPE : recherche de violations d’invariance de Lorentz." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEO010/document.
Full textThis thesis presents two Lorentz invariance tests, performed within the Standard Model Extension framework (SME). The first one is a search for a violation in the matter sector of the SME, using data from a cold atom clock. The search for variations in the hyperfine transition frequency of 133Cs allowed us to constrain several SME coefficients related to protons and neutrons, with a sensitivity improving by up to 12 orders of magnitude the current best laboratory limits on these coefficients. The second test was carried out using the data from the MICROSCOPE space mission, in flight since April 2016, which is intended to test the Weak Equivalence Principle (WEP) with an accuracy of 10−15 on the Eötvös parameter. In this experiment, a coupling between matter and gravitation could lead to Lorentz violation signals and therefore to variations in relative acceleration of two test masses depending on the satellite orientation. The relative acceleration is measured by a differential electrostatic accelerometer. The first results, obtained through the analysis of five sessions, have already demonstrated an improvement of up to 4 orders of magnitude of the constraints on two coefficients of the SME sector of matter-gravity couplings
Bourgoin, Adrien. "Contraintes sur les violations à la symétrie de Lorentz par analyse des données de télémétrie laser Lune." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066481/document.
Full textGeneral Relativity (GR) and the standard model of particle physics provide a comprehensive description of the four interactions of nature. A quantum gravity theory is expected to merge these two pillars of modern physics. From unification theories, such a combination would lead to a breaking of fundamental symmetry appearing in both GR and the standard model of particle physics as the Lorentz symmetry. Lorentz symmetry violations in all fields of physics can be parametrized by an effective field theory framework called the standard-model extension (SME). Local Lorentz Invariance violations in the gravitational sector should impact the orbital motion of bodies inside the solar system, such as the Moon. Thus, the accurate lunar laser ranging (LLR) data can be analyzed in order to study precisely the lunar motion to look for irregularities. For this purpose, ELPN (Ephéméride Lunaire Parisienne Numérique), a new lunar ephemeris has been integrated in the SME framework. This new numerical solution of the lunar motion provides time series dated in temps dynamique barycentrique (TDB). Among that series, we mention the barycentric position and velocity of the Earth-Moon vector, the lunar libration angles, the time scale difference between the terrestrial time and TDB and partial derivatives integrated from variational equations. ELPN predictions have been used to analyzed LLR observations. In the GR framework, the residuals standard deviations has turned out to be the same order of magnitude compare to those of INPOP13b and DE430 ephemerides. In the framework of the minimal SME, LLR data analysis provided constraints on local Lorentz invariance violations. Spetial attention was paid to analyze uncertainties to provide the most realistic constraints. Therefore, in a first place, linear combinations of SME coefficients have been derived and fitted to LLR observations. In a second time, realistic uncertainties have been determined with a resampling method. LLR data analysis did not reveal local Lorentz invariance violations arising on the lunar orbit. Therefore, GR predictions are recovered with absolute precisions of the order of 10-9 to 10-12
Bailey, Quentin G. "Lorentz violation and gravity." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3274990.
Full textSource: Dissertation Abstracts International, Volume: 68-07, Section: B, page: 4556. Adviser: V. Alan Kostelecky. Title from dissertation home page (viewed Apr. 22, 2008).
Mondragon, Antonio Richard. "Lorentz-violating dark matter." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1672.
Full textDa, Silva Leite Julio Rafael. "Aspects of fermion dynamics from Lorentz symmetry violation." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/aspects-of-fermion-dynamics-from-lorentz-symmetry-violation(5e450b90-beee-4099-a932-3cb64e93ba5f).html.
Full textColombo, Mattia. "Aspects of Lorentz violating theories of gravity." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/38419/.
Full textHardy, Lucien. "Nonlocality, violation of Lorentz invariance, and wave-particle duality in quantum theory." Thesis, Durham University, 1992. http://etheses.dur.ac.uk/6079/.
Full textBrister, James Sebastian. "Low-energy Lorentz symmetry violation from quantum corrections in Lifshitz-scaling models." Thesis, King's College London (University of London), 2015. http://kclpure.kcl.ac.uk/portal/en/theses/lowenergy-lorentz-symmetry-violation-from-quantum-corrections-in-lifshitzscaling-models(4f0d41a7-fd7d-4eb4-9aed-7ca45f8f0a9d).html.
Full textLang, Rodrigo Guedes. "Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-13042017-143220/.
Full textRelatividade é uma das mais importantes e bem testadas teorias e a invariância de Lorentz é um de seus pilares. A violação da invariância de Lorentz (VIL), todavia, tem sido discutida em diversos modelos de gravidade quântica e altas energias. Por tal motivo, é crucial testá-la. Diversos testes, tanto terrestres quanto astrofísicos, foram realizados nos últimos anos e fornecem limites na violação. Este trabalho se insere nesses esforços e discute a possibilidade de testar VIL com raios cósmicos de altíssima energia. Os efeitos da VIL em sua propagação e as consequentes mudanças no espectro de raios cósmicos de altíssima energia são obtidos e comparados com os dados experimentais do Observatório Pierre Auger. Um cálculo analítico para a inelasticidade no referencial do laboratório com VIL para qualquer interação da forma a + b → c + d é apresentado e usado para obter o espaço de fase e as perdas de energia para a produção de píons para prótons, a fotodesintegração para núcleos e a produção de pares para fótons com VIL. Uma parametrização para o limiar de energia da fotodesintegração com VIL também é proposta. O principal efeito observado é uma diminuição no espaço de fase e uma consequente diminuição nas perdas de energia. Tais mudanças foram implementadas em códigos de Monte Carlo para a propagação e os espectros resultantes para prótons, núcleos e fótons na Terra foram obtidos e ajustados aos dados do Observatório Pierre Auger. É mostrado que limites superiores nos coeficientes de VIL para o fóton podem ser deduzidos dos limites superiores para o fluxo de fótons do Observatório Pierre Auger.
Books on the topic "Lorentz Violations"
Alan, Kostelecký V., and ebrary Inc, eds. Proceedings of the fifth Meeting on CPT and Lorentz Symmetry, Bloomington, USA, 28 June-2 July 2010. Hackensack, N.J: World Scientific, 2011.
Find full textAlan, Kostelecký V., ed. Proceedings of the second Meeting on CPT and Lorentz Symmetry, Bloomington, USA, 15-18 August, 2001. River Edge, N.J: World Scientific, 2002.
Find full textAlan, Kostelecký V., ed. Proceedings of the Third Meeting on CPT and Lorentz Symmetry, Bloomington, USA, 4-7 August 2004. Hackensack, N.J: World Scientific, 2005.
Find full textAlan, Kostelecký V., ed. Proceedings of the Fourth Meering on CPT and Lorentz Symmetry, Bloomington, USA, 8-11 August 2007. Singapore: World Scientific, 2008.
Find full textBloomington) Meeting on CPT and Lorentz Symmetry (6th 2013 Indiana University. Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, USA, 17-21 June 2013. Edited by Kostelecký, V. Alan, editor of compilation. New Jersey: World Scientific, 2014.
Find full textPhysics beyond the light barrier: The source of parity violation, tachyons, and a derivation of standard model features. Auburn, NH: Pingree-Hill Pub., 2008.
Find full textBlaha, Stephen. The origin of the standard model: The genesis of four quark and lepton species, parity violation, the electro weak sector, color SU(3), three visible generations of fermions, and one generation of dark matter with dark energy ; Quantum theory of the third kind : a new type of divergence-free quantum field theory supporting a unified standard model of elementary particles and quantum gravity based on a new method in the calculus of variations. Auburn, NH: Pingree-Hill Publishing, 2006.
Find full textSun, Frank. New Physics with Lorentz Violation. Lulu.com, 2006.
Find full textSun, Frank Q. New Physics with Lorentz Violation and Deeper Structure. Lulu Publishing Services, 2018.
Find full textProceedings of the Meeting on Cpt and Lorentz Symmetry: Indiana University, Bloomington November 6-8, 1998. World Scientific Publishing Company, 1999.
Find full textBook chapters on the topic "Lorentz Violations"
Allen, Roland E. "Lorentz-Violating Supergravity." In Beyond the Desert 2003, 163–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18534-2_9.
Full textDuplij, Steven, Steven Duplij, Steven Duplij, Frans Klinkhamer, Frans Klinkhamer, Anatoli Klimyk, Gert Roepstorff, et al. "Lorentz Violation, with supersymmetry." In Concise Encyclopedia of Supersymmetry, 234. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_307.
Full textSolomon, Adam Ross. "Lorentz Violation During Inflation." In Cosmology Beyond Einstein, 155–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46621-7_8.
Full textLehnert, Ralf. "CPT and Lorentz-invariance violation." In EXA/LEAP 2008, 275–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02803-8_41.
Full textMajhi, Rudra, C. Soumya, and Rukmani Mohanta. "Lorentz Invariance Violation and Long Baseline Experiments." In Springer Proceedings in Physics, 349–53. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6292-1_44.
Full textPabisch, Roland. "Violation of Local Lorentz Invariance by Atomic Clocks." In Derivation of the time dilatation effect from fundamental properties of photons, 19–42. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-9483-6_3.
Full textCarreto Fidalgo, David. "Lorentz Invariance Violation: Limits from the Crab Pulsar." In Revealing the Most Energetic Light from Pulsars and Their Nebulae, 125–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24194-0_6.
Full textLehnert, Ralf. "Lorentz and CPT violation in the Standard-Model Extension." In SSP 2012, 219–24. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6485-9_29.
Full textLehnert, Ralf. "The Lorentz-Violating Extension of the Standard Model." In Beyond the Desert 2003, 179–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18534-2_10.
Full textAllmendinger, F., M. Burghoff, W. Heil, S. Karpuk, W. Kilian, S. Knappe-Grüneberg, W. Müller, et al. "Searches for Lorentz violation in 3He/129Xe clock comparison experiments." In SSP 2012, 209–17. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6485-9_28.
Full textConference papers on the topic "Lorentz Violations"
GAMBINI, RODOLFO, and JORGE PULLIN. "LORENTZ VIOLATIONS IN CANONICAL QUANTUM GRAVITY." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778123_0005.
Full textMEWES, MATTHEW. "HIGHER-ORDER LORENTZ VIOLATIONS IN ELECTRODYNAMICS." In Proceedings of the Fifth Meeting. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327688_0017.
Full textCOLLADAY, D., and P. MCDONALD. "NONRELATIVISITIC IDEAL GASES AND LORENTZ VIOLATIONS." In Proceedings of the Third Meeting. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702173_0032.
Full textLiberati, Stefano. "Quantum gravity phenomenology via Lorentz violations." In School on Particle Physics, Gravity and Cosmology. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.034.0018.
Full textOverduin, James M., and Hamna Ali. "Extra Dimensions and Violations of Lorentz Symmetry." In Seventh Meeting on CPT and Lorentz Symmetry. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813148505_0066.
Full textPAKVASA, SANDIP. "CPT AND LORENTZ VIOLATIONS IN NEUTRINO OSCILLATIONS." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778123_0023.
Full textLIBERATI, S., T. A. JACOBSON, and D. MATTINGLY. "HIGH ENERGY CONSTRAINTS ON LORENTZ SYMMETRY VIOLATIONS." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778123_0036.
Full textSamajdar, Anuradha. "Constraints on Lorentz-Invariance Violations from Gravitational-Wave Observations." In Eighth Meeting on CPT and Lorentz Symmetry. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811213984_0020.
Full textO’Neal-Ault, K., Quentin G. Bailey, and M. Zanolin. "Testing for Lorentz-Invariance Violations Through Birefringence Effects on Gravitational Waves." In Eighth Meeting on CPT and Lorentz Symmetry. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811213984_0057.
Full textHanson, J. C. "Ultra-High Energy Astrophysical Neutrino Detection and the Search for Lorentz-Invariance Violations." In Seventh Meeting on CPT and Lorentz Symmetry. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813148505_0047.
Full textReports on the topic "Lorentz Violations"
Amandolia, Kenneth, and Charles Lane. Untangling Coefficients for Lorentz Violation. Journal of Young Investigators, May 2018. http://dx.doi.org/10.22186/jyi.34.5.26-30.
Full textKatori, Teppei. Tests of Lorentz and CPT violation with MiniBooNE neutrino oscillation excesses. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1131289.
Full textWhittington, Denver Wade. Searches for Lorentz Violation in Top-Quark Production and Decay at Hadron Colliders. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1248357.
Full textKatori, Teppei. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/945410.
Full text