Academic literature on the topic 'Long range (LoRa)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Long range (LoRa).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Long range (LoRa)"
Roy, Amlan Jyoti, Bhargavjyoti Sharma, Avinab Das, Sajid-ul Haque, and Dr Runumi Sarma. "Long Range RF- Text based Communication System." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 747–50. http://dx.doi.org/10.22214/ijraset.2023.55242.
Full textSaletović, Enes, Nevzudin Buzađija, and Đulaga Hadžić. "Long-Range Remote Control Based on LoRa Transceivers." B&H Electrical Engineering 17, no. 2 (December 1, 2023): 42–48. http://dx.doi.org/10.2478/bhee-2023-0011.
Full textNga, Le Cong, Cuong Quoc Pham, and Tran Ngoc Thinh. "Energy-Efficiency Approach for Long Range Wireless Communication." Science & Technology Development Journal - Engineering and Technology 3, no. 3 (October 17, 2020): First. http://dx.doi.org/10.32508/stdjet.v3i3.532.
Full textA. Al-Shareeda, Mahmood, Abeer Abdullah Alsadhan, Hamzah H. Qasim, and Selvakumar Manickam. "Long range technology for internet of things: review, challenges, and future directions." Bulletin of Electrical Engineering and Informatics 12, no. 6 (December 1, 2023): 3758–67. http://dx.doi.org/10.11591/eei.v12i6.5214.
Full textNoor-A-Rahim, Md, M. Omar Khyam, Apel Mahmud, Xinde Li, Dirk Pesch, and H. Vincent Poor. "Hybrid Chirp Signal Design for Improved Long-Range (LoRa) Communications." Signals 3, no. 1 (January 5, 2022): 1–10. http://dx.doi.org/10.3390/signals3010001.
Full textDiana, Mery, Refdinal Nazir, and Arief Rufiyanto. "Harvesting RF Ambient Energy dari End Device LoRa (Long Range Access)." JURNAL INFOTEL 9, no. 4 (November 7, 2017): 387. http://dx.doi.org/10.20895/infotel.v9i4.282.
Full textDeeti, Akshitha, and B. Venkateshulu. "LoRa Based Smart City (Long Range)." ECS Transactions 107, no. 1 (April 24, 2022): 15733–43. http://dx.doi.org/10.1149/10701.15733ecst.
Full textLim, Junyeong, Jaemin Lee, Donghyun Kim, and Jongdeok Kim. "Performance Analysis of LoRa(Long Range) according to the Distances in Indoor and Outdoor Spaces." Journal of KIISE 44, no. 7 (July 31, 2017): 733–41. http://dx.doi.org/10.5626/jok.2017.44.7.733.
Full textYahya, Muhammad Sani, Socheatra Soeung, Narinderjit Singh Sawaran Singh, Zainab Yunusa, Francis Emmanuel Chinda, Sharul Kamal Abdul Rahim, Umar Musa, Nursyarizal B. M. Nor, Cheab Sovuthy, and Ghulam E. Mustafa Abro. "Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications." Sensors 23, no. 12 (June 6, 2023): 5359. http://dx.doi.org/10.3390/s23125359.
Full textLavric, Alexandru. "LoRa (Long-Range) High-Density Sensors for Internet of Things." Journal of Sensors 2019 (February 24, 2019): 1–9. http://dx.doi.org/10.1155/2019/3502987.
Full textDissertations / Theses on the topic "Long range (LoRa)"
Kihlberg, David, and Amir Ebrahimi. "Wireless Gas Sensor Nodes : With focus on Long Range (LoRa) communication." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-168669.
Full textOliv, Rasmus. "GPS-Tracking Device with Long Range and Bluetooth Low Energy Communication." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157458.
Full textProjektet har innefattat att ta fram en GPS-spårsändare som kan läsa NFC (Near Field Communication)-taggar, kommunicera med LoRa (Long Range) och BLE (Bluetooth low energy) samt undersöka vilka av GPS-spårsändarens olika delar som konsumerar mest energi. Användningsområdet för GPS-spårsändaren är att effektivisera räddningsinsatser på skadeplatser där det finns skadade människor exempelvis efter en översvämning eller terroristattack. Effektiviseringen är tänkt ska ske genom att en operationsledare styr räddningsinsatsen med hjälp av informationen som skickas från GPS-spårsändarna som kommer att bäras av skadade personer och räddningspersonalen på skadeplatsen. GPS-spårsändaren är utvecklad kring sensorutvecklings kittet Thingy:52 från Nordic Semiconductor och dess mjukvara har utvecklats genom att modifiera den mjukvara som Nordic Semiconductor har utvecklat för Thingy:52. De delar av GPS-spårsändaren som visade sig konsumera mest energi var GPS-modulen och NFC-läsaren. I rapporten finns energioptimerings förslag för dessa delar. Rapporten innehåller även ett förslag till ett kretsschema för GPS-spårsändaren som kan användas vid framtida miniatyrisering av GPS-spårsändaren.
Abboud, Samira. "Study and improvement of long range communication technologies for wireless sensor networks." Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC028.
Full textThe progress in low-energy, low-cost communication technologies have revolutionized remote sensing and monitoring applications. Internet of Things (IoT) has promised an ecosystem of connected devices across a wide range of applications such as in smart cities.Currently, many competing standards and technologies are attempting to seize the IoT, particularly in the area of remote sensing and communication technologies. LoRa (Long Range) is one of those technologies that is gaining popularity and attraction in the Wireless Sensor Networks (WSN) applications. The ability to make long-distance communications with relatively simple nodes, minimal infrastructure, reduced power requirements, and the use of unlicensed ISM bands provides a significant competitive advantage. Although the communication range in LoRa can exceed 15 kilometers in line of sight, the maximum bit rate that can be achieved is limited to few kilobits per second. Additionally, when a collision occurs in LoRa, the throughput is further reduced due to frame losses and retransmissions. The work of this thesis deals with the problem of collisions in LoRa that may occur under heavy load, and which degrade the performance of the network.First, we consider the context for LoRaWAN uplink communications. We study the context of fully synchronized colliding LoRa signals, where each end-device has to retransmit its entire colliding frame after a collision occurs in LoRa. This behavior decreases the overall throughput, and increases the energy consumption of the end-devices, and the delay of the frames. Therefore, in order to mitigate the damaging effects of collisions, we proposed a decoding algorithm to resolve synchronized colliding LoRa signals, in a saturated and confirmed network traffic. We substituted the conventional retransmission model of LoRa by having end-devices transmitting bitmaps instead of retransmitting whole frames to determine the correct symbols of each colliding frame. Our algorithm was able to significantly improve the overall throughput of the LoRaWAN MAC layer based on LoRa, and to decrease the energy consumption of the transmitters and the delay of the frames.Second, we consider the context for LoRaWAN downlink communications. We noticed that the downlink in LoRa is a bottleneck. Hence, we worked on the gateway selection by the network server and its impact on the throughput, the energy consumption and the delay. We studied three types of gateway deployment and we show that the system performance depends on this deployment. We showed that balancing the number of end-devices per gateway (also known as load) improves the throughput compared to choosing the gateway with the highest signal quality. Moreover, we showed that combining load and signal quality does not further improve the throughput. In addition, we showed that choosing the gateway with the highest signal quality decreases the delay and energy consumption compared to choosing the gateway with the lowest load
Oliveira, Rúben Pedrosa. "Sensor networks with multiple technologies: short and long range." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22735.
Full textLow-Power Wide Area Networks (LPWANs) are one set of technologies that are growing in the eld of the Internet of Things (IoT). Due to the long range capabilities and low energy consumption, Low-Power Wide Area Networks (LPWANs) are the ideal technologies to send small data occasionally. With their unique characteristics, LPWANs can be used in many applications and in di erent environments such as urban, rural and even indoor. The work developed in this dissertation presents a study on the LPWAN LoRa technology, by testing and evaluate its range, signal quality properties and its performance in delivering data. For this, three distinct scenarios are proposed and tested. The inclusion of LoRa in a multi-technology data gathering platform is the key objective of this dissertation. For this it is proposed: (1) an organization based in clusters of sensor nodes; (2) a Media Access Control (MAC) protocol to provide e cient communications through the LoRa technology; and nally, (3) a Connection Manager that is capable of managing the di erent available technologies in the sensor nodes and that is able to adapt its actions according to the acquired data type is proposed. The performed tests aim to perceive which type of parameters can in uence the performance of the overall proposed solution, as well as the advantages of a multi-technology approach in a data gathering platform.
Low-Power Wide Area Networks (LPWANs) são um conjunto de tecnologias em crescimento na área da Internet of Things (IoT). Devido ás suas capacidades de comunicar a longo alcance e de baixo consumo energético, as LPWANs apresentam-se como a tecnologia ideal para o envio ocasional de pequenas porções de dados. Ao possuírem características únicas, as LPWANs podem ser usadas em diversas aplicações e em diferentes ambientes, sejam eles urbanos, rurais ou interiores. O trabalho desenvolvido nesta dissertação apresenta um estudo acerca da tecnologia Long Range (LoRa), uma LPWAN, testando e avaliando o seu alcance, a qualidade do sinal e o desempenho na entrega de dados. Para isso, três cenários distintos são propostos e testados. A inclusão de LoRa numa plataforma de aquisição de dados com múltiplas tecnologias e um dos objectivos chave desta dissertação. Para isso, são propostas: (1) uma organização baseada em clusters de sensores; (2) um protocolo de controlo de acesso ao meio (MAC) para permitir que as comunicações através de LoRa sejam eficientes; e finalmente, (3) um gestor de conectividade com capacidade de gerir as diferentes tecnologias disponíveis nos sensores e que seja capaz de agir consoante o tipo de dados adquiridos. Os testes efectuados tem como objectivo perceber que tipo de parâmetros podem influenciar o desempenho global da soluçao proposta, bem como as vantagens de usar uma abordagem baseada em múltiplas tecnologias numa plataforma de aquisição de dados.
Alrashid, Ivan. "Ljudhändelsedetektor med distribueradeLoRa-anslutna akustiska sensorer." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174830.
Full textDetecting noise levels explains a lot in urban areas such as noise levels, number of shots, and number of collisions. In this project, a sound detector is installed that communicates via LoRa, Long Range when the sound exceeds a threshold value. The sound detector is implemented as a stand-alone module consisting of three existing modules. The modules used in the project include Lopy4 with Expansion Card 3.1, GPS module, and Sound sensor. The sound level, battery level, coordinates, date, and time are transferred via LoRa to a gateway and on to The Thing of Network, TTN website, and at the same time data is saved locally in an SD memory card when the sound exceeds a threshold. The threshold can be modified according to the user's wishes.
Gullipalli, Raashita, and Kiran Kumar Golla. "Arduino-Based Radio Technology System for Bird Protection : Wind Farm Application Approach." Thesis, Blekinge Tekniska Högskola, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20056.
Full textBenouakta, Amina. "Conception de systèmes antennaires pour applications de supervision et de localisation dans l'Internet des objets industriel." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4011.
Full textThis thesis is part of the concept of the Internet of Things (IoT), object identification, and traceability in so-called complex environments through Ultra-Wide Band (UWB) technology known for its high temporal precision. The objective is to contribute to the advancement of real-time UWB-based localization systems through the design and optimization of UWB antennas that are reconfigurable, multi-standards, and multi-functions. Therefore, any localization system integrating the optimized antennas will have improved localization quality and new functionalities.The main contributions developed in this thesis involve enhancements to real-time localization systems (RTLS) based on UWB technology: design and fabrication of frequency reconfigurable UWB antennas; design and fabrication of a multi-standard localization electronic board (UWB and Long Range - LoRa); experimental study of RTLS systems incorporating the designed antennas and validation of the evolution of the localization in terms of extended reading ranges, detectability of objects without prior knowledge of their orientations, and improved location accuracy through the attenuation of multi-path signals
Laricchia, Luigi. "Monitoraggio ambientale tramite tecnologia LoRaWAN: misurazioni sperimentali e piattaforma di data analytics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17312/.
Full textLad, Manish. "Characterization of Atmospheric Noise and Precipitation Static in the Long Range Navigation (Loran-C) Band for Aircraft." Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1102702655.
Full textKumar, Sujit. "Internet of Things Applications Using LoRa for Long Range Wireless Communication." Thesis, 2018. http://ethesis.nitrkl.ac.in/9931/1/2018_MT_216EC2202_SKumar_Internet.pdf.
Full textBooks on the topic "Long range (LoRa)"
Anderson, Julie. RN2903 Low-Power Long Range Lora®Technology Transceiver Module Data Sheet. Microchip Technology Incorporated, 2019.
Find full textTakenaka, Norio. RN2903 Low-Power Long Range Lora(R) Technology Transceiver Module Data Sheet. Microchip Technology Incorporated, 2016.
Find full textAnderson, Julie. RN2483 Low-Power Long Range Lora® Technology Receiver Module Data Sheet. Microchip Technology Incorporated, 2019.
Find full textNuccio, Aimee. RN2483 Low-Power Long Range Lora® Technology Transceiver Module Data Sheet. Microchip Technology Incorporated, 2020.
Find full textSeneviratne, Pradeeka. Beginning LoRa Radio Networks with Arduino: Build Long Range, Low Power Wireless IoT Networks. Apress, 2019.
Find full textLozano, Grace. Low-Power Long Range (LoRa®) Technology Gateway Module for US (LG9271) and EU (LG8271) Data Sheet. Microchip Technology Incorporated, 2017.
Find full textThe Old Farmers Almanac 2011 Calculated On A New And Improved Plan For The Year Of Our Lord. Old Farmer's Almanac, 2010.
Find full textStokes, Christopher. Romantic Prayer. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198857808.001.0001.
Full textBook chapters on the topic "Long range (LoRa)"
Vangelista, Lorenzo, Andrea Zanella, and Michele Zorzi. "Long-Range IoT Technologies: The Dawn of LoRa™." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 51–58. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27072-2_7.
Full textParate, Mayur Rajaram, and Ankit A. Bhurane. "LoRa for Long-Range and Low-Cost IoT Applications." In Futuristic Research Trends and Applications of Internet of Things, 71–100. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003244714-4.
Full textOng, C. H., W. M. Bukhari, M. N. Sukhaimie, M. A. Norasikin, A. F. A. Rasid, A. T. Izzudin, and N. F. Bazilah. "Study of Long Range (Lora) Network Coverage for Multi Areas." In Lecture Notes in Mechanical Engineering, 313–27. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8954-3_30.
Full textBhatter, Siddharth, Akash Verma, and Sayantan Sinha. "Application of IoT in Predictive Maintenance Using Long-Range Communication (LoRa)." In Lecture Notes in Electrical Engineering, 147–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2305-2_12.
Full textYin, Yuqing, Xiaojie Yu, Shouwan Gao, Xu Yang, Pengpeng Chen, and Qiang Niu. "MineSOS: Long-Range LoRa-Based Distress Gesture Sensing for Coal Mine Rescue." In Wireless Algorithms, Systems, and Applications, 105–16. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19214-2_9.
Full textFrazào, Danilo, Diana Martins, and Edgard Silva. "Long-Range Network (LoRa) Behavior in the Amazon Region in a Fluvial Environment." In Proceedings of the 8th Brazilian Technology Symposium (BTSym’22), 391–98. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31007-2_36.
Full textVijayakumaran, Thinesh. "Safety Helmet Head Impact Monitoring System Using Long Range (LoRa) Communication for Mining Industry." In Lecture Notes in Mechanical Engineering, 285–94. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8954-3_27.
Full textSasián, Félix, Diego Gachet, Miguel Suffo, and Ricardo Therón. "A Robust and Lightweight Protocol Over Long Range (LoRa) Technology for Applications in Smart Cities." In Smart Cities, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59513-9_1.
Full textSasián, Félix, Diego Gachet, Manuel de Buenaga, and Fernando Aparicio. "A Dictionary Based Protocol over LoRa (Long Range) Technology for Applications in Internet of Things." In Ubiquitous Computing and Ambient Intelligence, 140–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67585-5_15.
Full textBirajdar, Gajanand, Rajesh Singh, and Anita Gehlot. "Systematic Framework for Early Fire Detection and Smart Evacuation Using loRa—A Long-Range and Low-Power Communication Protocol." In Advances in Intelligent Systems and Computing, 351–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1510-8_34.
Full textConference papers on the topic "Long range (LoRa)"
Ghodhbane, Raouia Masmoudi. "Maximization of Wireless Sensing Network’s Throughput Communicating with Long Range (LoRa) Modulation." In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), 594–99. IEEE, 2024. http://dx.doi.org/10.1109/atsip62566.2024.10638955.
Full textMarković, Dušan, Uroš Pešović, Slađana Đurašević, Mihailo Knežević, Dalibor Tomić, and Vladeta Stevović. "LORA (LONG-RANGE) TEHNOLOGIJA U PRECIZNOJ POLJOPRIVREDI." In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.129m.
Full textXie, Binbin, and Jie Xiong. "Combating interference for long range LoRa sensing." In SenSys '20: The 18th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3384419.3430731.
Full textTrüb, Roman, Reto Da Forno, Tonio Gsell, Jan Beutel, and Lothar Thiele. "A testbed for long-range LoRa communication." In IPSN '19: The 18th International Conference on Information Processing in Sensor Networks. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3302506.3312484.
Full textCappelli, Irene, Gabriele Di Renzone, Ada Fort, Marco Mugnaini, Alessandro Pozzebon, and Valerio Vignoli. "Long Range (LoRa) Transmission Through Ice: Preliminary Results." In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2021. http://dx.doi.org/10.1109/i2mtc50364.2021.9459858.
Full textXie, Binbin, Minhao Cui, Deepak Ganesan, Xiangru Chen, and Jie Xiong. "Boosting the Long Range Sensing Potential of LoRa." In MobiSys '23: 21st Annual International Conference on Mobile Systems, Applications and Services. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3581791.3596847.
Full textDebdas, Subhra, Anwista Chakraborty, Harshit Kumar Verma, Arpita Kushwaha, D. Venkat Prasad Varma, and Arkajyoti Karmakar. "Long Range (LoRa) Fire Fighter In Dense Forest." In 2022 International Conference on Computer, Power and Communications (ICCPC). IEEE, 2022. http://dx.doi.org/10.1109/iccpc55978.2022.10072080.
Full textLuo, Juan, Renjie Zhou, and Yue Cheng. "LoRa-based contactless long-range respiration classification system." In 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2023. http://dx.doi.org/10.1109/icpads56603.2022.00023.
Full textJiang, Jinyan, Zhenqiang Xu, Fan Dang, and Jiliang Wang. "Long-range ambient LoRa backscatter with parallel decoding." In ACM MobiCom '21: The 27th Annual International Conference on Mobile Computing and Networking. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447993.3483261.
Full textIrfan bin Edi, Muhammad Eddie, Nur Emileen Abd Rashid, Nor Najwa Ismail, and Korhan Cengiz. "Low-Cost, Long-Range Unmanned Aerial Vehicle (UAV) Data Logger Using Long Range (LoRa) Module." In 2022 IEEE Symposium on Wireless Technology & Applications (ISWTA). IEEE, 2022. http://dx.doi.org/10.1109/iswta55313.2022.9942751.
Full text