Academic literature on the topic 'Long-range interacting systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Long-range interacting systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Long-range interacting systems"

1

Gupta, Shamik, and David Mukamel. "Relaxation dynamics of stochastic long-range interacting systems." Journal of Statistical Mechanics: Theory and Experiment 2010, no. 08 (August 26, 2010): P08026. http://dx.doi.org/10.1088/1742-5468/2010/08/p08026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sasaki, Munetaka, and Fumitaka Matsubara. "Stochastic Cutoff Method for Long-Range Interacting Systems." Journal of the Physical Society of Japan 77, no. 2 (February 15, 2008): 024004. http://dx.doi.org/10.1143/jpsj.77.024004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bernard, D., M. Gaudin, F. D. M. Haldane, and V. Pasquier. "Yang-Baxter equation in long-range interacting systems." Journal of Physics A: Mathematical and General 26, no. 20 (October 21, 1993): 5219–36. http://dx.doi.org/10.1088/0305-4470/26/20/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Endo, Eishin, Yuta Toga, and Munetaka Sasaki. "Parallelized Stochastic Cutoff Method for Long-Range Interacting Systems." Journal of the Physical Society of Japan 84, no. 7 (July 15, 2015): 074002. http://dx.doi.org/10.7566/jpsj.84.074002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tatekawa, Takayuki. "Phase transition in d-dimensional long-range interacting systems." Computer Physics Communications 177, no. 1-2 (July 2007): 190. http://dx.doi.org/10.1016/j.cpc.2007.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nota, Alessia, Juan Velázquez, and Raphael Winter. "Interacting particle systems with long-range interactions: scaling limits and kinetic equations." Rendiconti Lincei - Matematica e Applicazioni 32, no. 2 (July 14, 2021): 335–77. http://dx.doi.org/10.4171/rlm/939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Defenu, Nicolò. "Metastability and discrete spectrum of long-range systems." Proceedings of the National Academy of Sciences 118, no. 30 (July 23, 2021): e2101785118. http://dx.doi.org/10.1073/pnas.2101785118.

Full text
Abstract:
Long-lived quasi-stationary states (QSSs) are a signature characteristic of long-range interacting systems both in the classical and in the quantum realms. Often, they emerge after a sudden quench of the Hamiltonian internal parameters and present a macroscopic lifetime, which increases with the system size. Despite their ubiquity, the fundamental mechanism at their root remains unknown. Here, we show that the spectrum of systems with power-law decaying couplings remains discrete up to the thermodynamic limit. As a consequence, several traditional results on the chaotic nature of the spectrum in many-body quantum systems are not satisfied in the presence of long-range interactions. In particular, the existence of QSSs may be traced back to the finiteness of Poincaré recurrence times. This picture justifies and extends known results on the anomalous magnetization dynamics in the quantum Ising model with power-law decaying couplings. The comparison between the discrete spectrum of long-range systems and more conventional examples of pure point spectra in the disordered case is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Gupta, Shamik, Thierry Dauxois, and Stefano Ruffo. "Out-of-equilibrium fluctuations in stochastic long-range interacting systems." EPL (Europhysics Letters) 113, no. 6 (March 1, 2016): 60008. http://dx.doi.org/10.1209/0295-5075/113/60008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yao, Zhenwei. "Dynamical effects of long-range interaction revealed in screened Coulomb interacting ring systems." EPL (Europhysics Letters) 133, no. 5 (March 1, 2021): 54002. http://dx.doi.org/10.1209/0295-5075/133/54002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rocha Filho, Tarcísio M. "Molecular dynamics for long-range interacting systems on graphic processing units." Computer Physics Communications 185, no. 5 (May 2014): 1364–69. http://dx.doi.org/10.1016/j.cpc.2014.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Long-range interacting systems"

1

Morand, Jules. "Dynamics of long range interacting systems beyond the Vlasov limit." Doctoral thesis, Paris 6, 2014. http://hdl.handle.net/10362/50537.

Full text
Abstract:
Université Pierre et Marie Curie
Laboratoire de Physique Nucléaire et Hautes Énergies dans le cadre de l’École Doctorale ED 389
Tese arquivada ao abrigo da Portaria nº 227/2017 de 25 de julho.
Long range interactions concern numerous natural systems. A notable example is the one of the gravitation which is relevant in the case of the study of a stars system or galaxy clusters. In particular, these systems does not respect the additivity of thermodynamical potential and present a dynamics dominated by collective effects. One of the most remarkable feature is that, after a very rapid evolution, these systems remains trapped into quasi-stationary states up to a very long time (diverging with the system size). It is only on longer time scales, that simulations have shown that the system relaxes to thermal equilibrium. Quasi-stationary states are theoretically interpreted as solutions of the Vlasov equation. This mean filed equation represents a very good approximation of the dynamics of long range systems in the limit of a large number of particles. Firstly we give a limit on the validity of the Vlasov equation depending of the range of the pair force and on its short scales regularisation. In a second part, using theoretical an numerical approach, we study the modification of the dynamics of long range systems when subjected to different kinds of non-Hamiltonian perturbations. In particular, the robustness of quasi-stationary states, in presence of this different perturbations is analysed in details.
Les interactions à longue portée concernent de nombreux systèmes naturels. Un exemple notable est celui de la gravitation newtonienne qui est pertinent dans le cas de l’étude de systèmes d’étoiles ou d’amas de galaxies. Ces systèmes ont notamment la particularité de ne pas respecter l’additivité des potentiels thermodynamiques et présentent une dynamique dominée par les effets collectifs. Une caractéristique remarquable est qu’après une évolution très rapide, ces systèmes restent piégés dans des états quasi-stationnaires pendant un temps qui peut être extrêmement grand (divergeant avec la taille du système). C’est seulement sur des échelles de temps plus longues que les simulations montrent que ces systèmes relaxent à l’équilibre thermodynamique. Les états quasi-stationnaire sont interprétés théoriquement comme les solutions stationnaires de l’équation de Vlasov. Cette équation de champs moyen représente une très bonne approximation de la dynamique macroscopique des systèmes en interaction à longue portée dans la limite où le nombre de particules tend vers l’infini. Dans un premier temps, nous nous attachons à comprendre, en fonction de la portée de la force de paire et de sa régularisation à court distance, quel est le champs de validité de cette équation, et en particulier, dans quelle cas le phénomène d’état quasi-stationnaire est attendu. Dans une seconde partie, combinant les approches théoriques et numériques, nous étudions la modification de la dynamique des systèmes à longue portée soumis à différentes sortes de perturbations non-Hamiltoniennes. La robustesse des états quasi-stationnaires en présence des différentes perturbations est analysée en détails.
APA, Harvard, Vancouver, ISO, and other styles
2

Morand, Jules. "Dynamics of long range interacting systems beyond the Vlasov limit." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066624/document.

Full text
Abstract:
Les interactions à longue portée concernent de nombreux systèmes naturels. Un exemple notable est celui de la gravitation newtonienne qui est pertinent dans le cas de l'étude de systèmes d'étoiles ou d'amas de galaxies. Ces systèmes ont notamment la particularité de ne pas respecter l'additivité des potentiels thermodynamiques et présentent une dynamique dominée par les effets collectifs. Une caractéristique remarquable est qu'après une évolution très rapide, ces systèmes restent piégés dans des états quasi-stationnaires pendant un temps qui peut être extrêmement grand (divergeant avec la taille du système). C'est seulement sur des échelles de temps plus longue que les simulation montre que ces systèmes relaxent à l’équilibre thermodynamique.Les états quasi-stationnaire sont interprétés théoriquement comme les solution stationnaires de l'équation de Vlasov. Cette équation de champs moyen représente un très bonne approximation de la dynamique macroscopique des systèmes en interaction à longue portée dans la limite ou le nombre de particule tend vers l'infini. Dans une premier temps, nous nous attacherons à comprendre, en fonction de la portée de la force de paire et de sa régularisation à court distance, quel est le champs de validité de cette équation, et en particulier, dans quelle cas le phénomène d'état quasi-stationnaire est attendu.Dans une seconde partie, combinant les approches théoriques et numériques, nous étudions la modification de la dynamique des systèmes à longue portée soumis à différentes sortes de perturbation non-Hamiltonienne. La robustesse des états quasi-stationnaires en présence des différentes perturbation est analysée en détails
Long range interactions concern numerous natural systems. A notable example is the one of the gravitation which is relevant in the case of the study of a stars system or galaxy clusters. In particular, these systems does not respect the additivity of thermodynamical potential and present a dynamics dominated by collective effects. One of the most remarkable feature is that, after a very rapid evolution, these systems remains trapped into quasi-stationary states up to a very long time (diverging with the system size). It is only on longer time scales, that simulations have shown that the system relaxes to thermal equilibrium.Quasi-stationary states are theoretically interpreted as solutions of the Vlasov equation. This mean filed equation represents a very good approximation of the dynamics of long range systems in the limit of a large number of particles. Firstly we give a limit on the validity of the Vlasov equation depending of the range of the pair force and on its short scales regularisation. In a second part, using theoretical an numerical approach, we study the modification of the dynamics of long range systems when subjected to different kinds of non-Hamiltonian perturbations. In particular, the robustness of quasi-stationary states, in presence of this different perturbations is analysed in details
APA, Harvard, Vancouver, ISO, and other styles
3

Latella, Ivan. "Statistical thermodynamics of long-range interacting systems and near-field thermal radiation." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400405.

Full text
Abstract:
Two main topics are examined in this thesis: classical systems with long-range interactions and thermal radiation in the near-field regime. In the first part, we present a thermodynamic approach describing systems with long-range interactions which takes into account the intrinsic nonadditivity in these systems. The basic concept behind this approach is to consider a large ensemble of replicas of the system where the standard formulation of thermodynamics can be naturally applied and the properties of a single system can be consequently inferred. The formulation of the thermodynamic for these systems is in close connection with Hill's thermodynamics of systems with small number of particles. It is shown that systems with long-range interactions can attain equilibrium configurations in the unconstrained ensemble. In this statistical ensemble, the control parameters are the temperature, pressure, and chemical potential, while the energy, volume, and number of particles fluctuate. We consider a solvable model as a concrete example of a system that achieves stable equilibria in this ensemble. We also give a complete description of the phase-diagram of the Thirring model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. I the second part, we study energy and entropy fluxes of near-field thermal radiation in many-body systems, with application to energy-conversion processes. It is shown that the maximum work that can be obtained from the thermal radiation emitted by two planar sources in the near-field regime is much larger than that corresponding to the blackbody limit. This quantity as well as an upper bound for the efficiency of the process are computed from the formulation of thermodynamics in the near-field regime. The case when the difference of temperatures of the hot source and the environment is small, relevant for energy harvesting, is studied in detail. We also show that thermal radiation energy conversion can be more efficient in the near-field regime. Moreover, by analyzing the thermodynamic performance of three-body near-field heat engines, we demonstrate that the power they supply can be substantially larger than that of two-body systems, showing their strong potential for energy harvesting. Theoretical limits for energy and entropy fluxes in three-body systems are discussed and compared with their corresponding two-body counterparts. Such considerations confirm that the thermodynamic availability in energy-conversion processes driven by three-body photon tunneling can exceed the thermodynamic availability in two-body systems.
En esta tesis se estudia la termodinámica y mecánica estadística de sistemas clásicos con interacciones de largo alcance y de la radiación térmica de campo cercano. En la primera parte, introducimos un formalismo termodinámico apropiado para sistemas con interacciones de largo alcance, en el cual se tiene en cuenta la no aditividad intrínseca en estos sistemas. Para estos sistemas, mostramos que la temperatura, presión y potencial químico pueden ser variables independientes. A su vez, dependiendo del sistema, lo anterior da lugar a poder tomar estas variables como parámetros de control para definir las configuraciones de equilibrio. Para estudiar este hecho, hemos introducido un modelo que cumple estas condiciones. En la segunda parte de la tesis, hemos desarrollado un esquema termodinámico para describir procesos de conversión de energía en trabajo útil en sistemas con interacción térmica radiativa en el campo cercano. Se ha mostrado explícitamente que de la radiación térmica de campo cercano puede extraerse un trabajo útil mayor que el obtenido de la radiación térmica de cuerpo negro. Hemos mostrado, además, que la potencia obtenida en sistemas con tres cuerpos en interacción puede ser considerablemente superior que en el caso de dos cuerpos.
APA, Harvard, Vancouver, ISO, and other styles
4

Nardini, Cesare. "Energy landscapes, equilibrium and out of equilibrium physics of long and short range interacting systems." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00820555.

Full text
Abstract:
The thesis is divided in two parts, corresponding to the two main subjects on which I have worked during my PhD. In the first Part, we introduce many-body long-range interacting systems, such as plasma and self-gravitating systems. We first review the well known properties of isolated systems, which show peculiar behaviors both for what concern the equilibrium and the relaxation to equilibrium. We then consider long-range systems driven away from equilibrium and we show how the techniques developed for isolated systems can be extended to describe these situations. Generalizations to describe simplified models relevant for geophysical flows and two-dimensional turbulence are also discussed. Our work stands at the edge between the study of long-range interacting systems and the study of non-equilibrium systems.The second part of the thesis is devoted to the study of equilibrium properties of Hamiltonian systems with energy landscape techniques. A number of recent results is reviewed and applied to long and short-range interacting systems. One of the scope of my work was to study models whose energy landscape is much more complicated than what previously done. In the case of ferromagnetic short-range O(n) models on hypercubic lattices, our analysis unveiled a striking similarity between the critical energies of the Ising model and the O(n) models defined on the same lattice with the same interaction matrix. Generalizations of the Stillinger and Weber formalism are discussed as preliminary results and future perspectives.
APA, Harvard, Vancouver, ISO, and other styles
5

Staniscia, Fabio. "Out-of-equilibrium behavior of many-body Hamiltonian systems with different interaction ranges." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4972.

Full text
Abstract:
2009/2010
In this Thesis we describe the theoretical-computational study performed on the behavior of isolated systems, far from thermodynamic equilibrium. Analyzing models well-known in literature we follow a path bringing to the classification of different behaviors in function of the interaction range of the systems' particles. In the case of systems with long-range interaction we studied the "Quasi-Stationary states" (QSSs) which emerge at short times when the system evolves with Hamiltonian dynamics. Their interest is in the fact that in many physical systems, such as self-gravitating systems, plasmas and systems characterized by wave-particle interaction, QSSs are the only experimentally accessible regime. QSS are defined as stable solutions of the Vlasov equation and, as their duration diverges with the system size, for large systems' size they can be seen as the true equilibria. They do not follow the Boltzmann statistics, and it does not exists a general theory which describes them. Anyway it is possible to give an approximate description using Lynden-Bell theory. One part of the thesis is devoted to shed light on the characteristics of the phase diagram of the "Hamiltonian mean field" model (HMF), during the QSS, calculated with the Lynden-Bell theory. The results of our work allowed to confirm numerically the presence of a phase re-entrance. In the Thesis is present also a detailed description on the system's caloric curves and on the metastability. Still in this context we show an analysis of the equivalence of the statistical ensembles, confirmed in almost the totality of the phase diagram (except for a small region), although the presence of negative specific heat in the microcanonical ensemble, which in Boltzmannian systems implies the non-equivalence of statistical ensembles. This result allowed us to arrive to a surprising conclusion: the presence of negative specific heat in the canonical ensemble. Still in the context of long-range interacting systems we analyze the linear stability of the non-homogeneous QSSs with respect to the Vlasov equation. Since the study of QSS find an application in the Free-electron laser (FEL) and other light sources, which are characterized by wave-particle interaction, we analyze, in the last chapter, the experimental perspectives of our work in this context. The other class of systems we studied are short-range interacting systems. Here the behavior of the components of the system is strongly influenced by the neighbors, and if one takes a system in a disordered state (a zero magnetization state for magnetic systems), which relaxes towards an ordered equilibrium state, one sees that the ordering process first develops locally and then extends to the whole system forming domains of opposed magnetization which grow in size. This process is called "coarsening". Our work in this field consisted in investigating numerically the laws of scale, and in the Thesis we characterize the temporal dependence of the domain sizes for different interaction ranges and we show a comparison between Hamiltonian and Langevin dynamics. This work inserts in the open debate on the equivalence of different dynamics where we found that, at least for times not too large, the two dynamics give different scaling laws.
In questa Tesi è stato fatto uno studio di natura teorico-computazionale sul comportamento dei sistemi isolati lontani dall'equilibrio termodinamico. Analizzando modelli noti in letteratura è stato seguito un percorso che ha portato alla classificazione di differenti comportamenti in funzione del range di interazione delle particelle del sistema. Nel caso di sistemi con interazione a lungo raggio sono stati studiati gli "stati quasi-stazionari" (QSS) che emergono a tempi brevi quando il sistema evolve con dinamica hamiltoniana. Il loro interesse risiede nel fatto che in molti sistemi fisici, come i sistemi auto-gravitanti, plasmi e sistemi caratterizzati da interazione onda-particella, i QSS risultano essere gli unici regimi accessibili sperimentalmente. I QSS sono definiti come soluzioni stabili dell'equazione di Vlasov, e visto che la loro durata diverge con la taglia del sistema, per sistemi di grandi dimensioni possono essere visti come i veri stati di equilibrio. Questi non seguono la statistica di Bolzmann, e non esiste una teoria generale che li descriva. E' tuttavia possibile fare una descrizione approssimata utilizzando la teoria di Lynden-Bell. Una parte della tesi è dedicata alla comprensione delle caratteristiche del diagramma di fase del modello "Hamiltonian mean field" (HMF) durante il QSS, calcolato con la teoria di Lynden-Bell. Il risultato del nostro lavoro ha permesso di confermare numericamente la presenza di fasi rientrati. E' inoltre presente un'analisi dettagliata sulle curve caloriche del sistema e sulla metastabilità. Sempre in questo contesto è stata fatto uno studio sull'equivalenza degli ensemble statistici, confermata nella quasi totalità del diagramma di fase (tranne in una piccola regione), nonostante la presenza di calore specifico negativo nell'insieme microcanonico, che in sistemi Boltzmanniani è sinonimo di non-equivalenza degli ensemble statistici. Questo risultato ci ha permesso di arrivare ad una sorprendente conclusione: la presenza di calore specifico negativo nell'insieme canonico. Sempre nel contesto dei sistemi con interazione a lungo range, è stata analizzata la stabilità lineare rispetto all'equazione di Vlasov degli stati quasi-stazionari non-omogenei. Poiché lo studio dei QSS trova applicazione nel Free-electron laser (FEL) e in altre sorgenti di luce, caratterizzate dall'interazione onda-particella, abbiamo analizzato anche le prospettive sperimentali del nostro lavoro in questo contesto. L'altra classe di sistemi che è stata studiata sono i sistemi con interazione a corto raggio. Qui il comportamento dei componenti del sistema è fortemente influenzato dai vicini, e se si prende un sistema in uno stato disordinato (a magnetizzazione nulla nei sistemi magnetici) che rilassa verso l'equilibrio ordinato, si vede che il processo di ordinamento si sviluppa prima localmente e poi si estende a tutto il sistema formando dei domini di magnetizzazione opposta che crescono in taglia. Questo processo si chiama "coarsening". Il nostro lavoro in questo contesto è consistito in una investigazione numerica delle leggi di scala, e nella tesi è stata caratterizzata la dipendenza temporale della taglia dei domini per differenti range di interazione ed è stato fatto un confronto fra dinamica hamiltoniana e dinamica di Langevin. Questi risultati si inseriscono nel dibattito aperto sull'equivalenza di differenti dinamiche, e si è mostrato che, almeno per tempi non troppo grandi, le due dinamiche portano a leggi di scala differenti.
XXIII Ciclo
1982
APA, Harvard, Vancouver, ISO, and other styles
6

Preto, Jordane. "Long-range interactions in biological systems." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4053.

Full text
Abstract:
L'auto-organisation des organismes vivants est d'une complexité et d'une efficacité étonnantes. Plus précisément, les systèmes biologiques abritent un nombre gigantesque de réactions très spécifiques qui nécessitent que la bonne biomolécule se retrouve à la bonne place, dans le bon ordre et en un temps suffisamment court pour permettre le fonctionnement cellulaire, et au-delà la vie cellulaire. D'un point de vue dynamique, cela pose la question fondamentale de savoir comment les biomolécules trouvent efficacement leur(s) cible(s) spécifique(s), ou encore, quels types de forces rassemblent tous ces partenaires de réaction spécifiques dans un environnement aussi dense et ionisé que les micro-environnements cellulaires. Dans cette thèse, nous explorons la possibilité que des biomolécules puissent interagir à travers des interactions électromagnétiques de longue-portée telles que ces dernières sont prédites à partir des premiers principes de la physique; ''longue-portée'' signifiant que les interactionsen question sont actives sur des distances bien plus larges que les dimensions typiques des molécules mises en jeu (i.e., plus grandes qu'environ 50 angströms dans les systèmes biologiques). Après avoir posé les fondements théoriques concernant les interactionsde longue-portée potentiellement actives sur de longue distances dans un contexte biologique, nous étudions la posssibilité de détecter leur éventuelle contribution à partir de dispositifs expérimentaux qui sont accessibles de nos jours. Sur ce dernier point, des résultats préliminaires encourageants tant sur le plan théorique qu'expérimental sont présentés
Self-organization of living organisms is of an astonishing complexity and efficiency. More specifically, biological systems are the site of a huge number of very specific reactions thatrequire the right biomolecule to be at the right place, in the right order and in a reasonably short time to sustain cellular function and ultimately cellular life. From the dynamic point of view, this raises the fundamental question of how biomolecules effectively find their target(s); in other words, what kinds of forces bring all these specific cognate partners together in an environment as dense and ionized as cellular micro-environments. In the present thesis, we explore the possibility that biomolecules interact through long-range electromagnetic interactions as they are predicted from the first principles of physics; "long-range" meaning that the mentioned interactions are effective over distances much larger than the typical dimensions of the molecules involved (i.e., larger than about 50 angströms in biological systems).After laying the theoretical foundations about interactions that are potentially active over long distances in a biological context, we investigate the possibility of detecting their contribution from experimental devices which are nowadays available. On the latter point, encouraging preliminary results both at the theoretical and experimental levels are exposed
APA, Harvard, Vancouver, ISO, and other styles
7

Myers, Owen Dale. "Spatiotemporally Periodic Driven System with Long-Range Interactions." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/524.

Full text
Abstract:
It is well known that some driven systems undergo transitions when a system parameter is changed adiabatically around a critical value. This transition can be the result of a fundamental change in the structure of the phase space, called a bifurcation. Most of these transitions are well classified in the theory of bifurcations. Among the driven systems, spatiotemporally periodic (STP) potentials are noteworthy due to the intimate coupling between their time and spatial components. A paradigmatic example of such a system is the Kapitza pendulum, which is a pendulum with an oscillating suspension point. The Kapitza pendulum has the strange property that it will stand stably in the inverted position for certain driving frequencies and amplitudes. A particularly interesting and useful STP system is an array of parallel electrodes driven with an AC electrical potential such that adjacent electrodes are 180 degrees out of phase. Such an electrode array embedded in a surface is called an Electric Curtain (EC). As we will show, by using two ECs and a quadrupole trap it is posible to produce an electric potential simular in form to that of the Kapitza pendulum. Here I will present the results of four related pieces of work, each focused on understanding the behaviors STP systems, long-range interacting particles, and long-range interacting particles in STP systems. I will begin with a discussion on the experimental results of the EC as applied to the cleaning of solar panels in extraterrestrial environments, and as a way to produce a novel one-dimensional multiparticle STP potential. Then I will present a numerical investigation and dynamical systems analysis of the dynamics that may be possible in an EC. Moving to a simpler model in order to explore the rudimentary physics of coulomb interactions in a STP potential, I will show that the tools of statistical mechanics may be important to the study of such systems to understand transitions that fall outside of bifurcation theory. Though the Coulomb and, similarly, gravitational interactions of particles are prevalent in nature, these long-range interactions are not well understood from a statistical mechanics perspective because they are not extensive or additive. Finally, I will present a simple model for understanding long-range interacting pendula, finding interesting non-equilibrium behavior of the pendula angles. Namely, that a quasistationary clustered state can exist when the angles are initially ordered by their index.
APA, Harvard, Vancouver, ISO, and other styles
8

Buyskikh, Anton S. "Dynamics of quantum many-body systems with long-range interactions." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=28798.

Full text
Abstract:
Constantly increasing experimental possibilities with strongly correlated systems of ultracold atoms in optical lattices and trapped ions make them one of the most promising candidates for quantum simulation and quantum computation in the near future, and open new opportunities for study many-body physics. Out-of-equilibrium properties of such complex systems present truly fascinating and rich physics, which is yet to be fully understood. This thesis studies many-body dynamics of quantum systems with long-range interactions and addresses a few distinct issues. The first one is related to a growing interest in the use of ultracold atoms in optical lattices to simulate condensed matter systems, in particular to understand their magnetic properties. In our project on tilted optical lattices we map the dynamics of bosonic particles with resonantly enhanced long-range tunnelings onto a spin chain with peculiar interaction terms. We study the novel properties of this system in and out of equilibrium. The second main topic is the dynamical growth of entanglement and spread of correlations between system partitions in quench experiments. Our investigation is based on current experiments with trapped ions, where the range of interactions can be tuned dynamically from almost neighboring to all-to-all. We analyze the role of this interaction range in non-equilibrium dynamics. The third topic we address is a new method of quantum state estimation, certified Matrix Product State (MPS) tomography, which has potential applications in regimes unreachable by full quantum state tomography. The investigation of quantum many-body systems often goes beyond analytically solvable models; that is where numerical simulations become vital. The majority of results in this thesis were obtained via the Density Matrix Renormalization Group (DMRG) methods in the context of the MPS and Matrix Product Operator(MPO) formalism. Further developing and optimizing these methods made it possible to obtain eigenstates and thermal states as well as to calculate the time dependent dynamics in quenches for experimentally relevant regimes.
APA, Harvard, Vancouver, ISO, and other styles
9

Olivier, G. J. F. (Gerrit Jacobus Francois). "Statistical thermodynamics of long-range quantum spin systems." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20003.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2012.
ENGLISH ABSTRACT:In this thesis we discuss some of the anomalies present in systems with long-range interactions, for instance negative speci c heat and negative magnetic susceptibility, and show how they can be related to the convexity properties of the thermodynamic potentials and nonequivalence of ensembles. We also discuss the possibility of engineering long-range quantum spin systems with cold atoms in optical lattices to experimentally verify the existence of nonequivalence of ensembles. We then formulate an expression for the density of states when the energy and magnetisation correspond to a pair of non-commuting operators. Finally we analytically compute the entropy s( ;m) as a function of energy, , and magnetisation, m, for the anisotropic Heisenberg model with Curie-Weiss type interactions. The results show that the entropy is non-concave in terms of magnetisation under certain circumstances which in turn indicates that the microcanonical and canonical ensembles are not equivalent and that the magnetic susceptibility is negative. After making an appropriate change of variables we show that a second-order phase transition can be present at negative temperatures in the microcanonical ensemble which cannot be represented in the canonical ensemble.
AFRIKAANSE OPSOMMING: In hierdie tesis bespreek ons van die onverwagte eienskappe wat sisteme met lang afstand wisselwerkings kan openbaar, byvoorbeeld negatiewe spesi eke warmte en negatiewe magnetiese suseptibiliteit. Ons dui ook die ooreenkoms tussen hierdie gedrag en die konveksiteit van die termodinamiese potensiale en nie-ekwivalente ensembles aan. Hierna bespreek ons die moontlikheid om lang afstand kwantum spin sisteme te realiseer met koue atome in 'n optiese rooster. Daarna wys ons hoe dit moontlik is om 'n uitdrukking vir die digtheid van toestande te formuleer vir sisteme waar die energie en magnetisasie ooreenstem met operatore wat nie met mekaar kommuteer nie. Uiteindelik bepaal ons die entropie, s( ;m), in terme van die energie, , en magnetisasie, m, vir die anisotropiese Heisenberg model met Curie-Weiss tipe interaksies. Die resultate wys dat die entropie onder sekere omstandighede nie konkaaf in terme van magnetisasie is nie. Dit, op sy beurt, dui aan dat die mikrokanoniese en kanoniese ensembles nie ekwivalent is nie en dat die magnetiese suseptibiliteit negatief kan wees. Nadat ons 'n toepaslike transformasie van veranderlikes maak, wys ons dat 'n tweede orde fase-oorgang by negatiewe temperature kan plaasvind in die mikrokanoniese ensemble wat nie verteenwoordig kan word in die kanoniese ensemble nie.
APA, Harvard, Vancouver, ISO, and other styles
10

Mihaylov, Petar. "Investigation of long-range interactions in the human visual system." Thesis, Glasgow Caledonian University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547413.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Long-range interacting systems"

1

1967-, Dauxois T. (Thierry), Ruffo Stefano 1954-, and Cugliandolo, L. F. (Leticia F.), eds. Long-range interacting systems: École d'été des Houches, session XC, 4-29 August 2008, École thématique du CNRS. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Long-range interactions, stochasticity and fractional dynamics. Beijing: Higher Education Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dauxois, Thierry, Stefano Ruffo, Ennio Arimondo, and Martin Wilkens, eds. Dynamics and Thermodynamics of Systems with Long-Range Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45835-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dauxois, Thierry. Dynamics and Thermodynamics of Systems with Long-Range Interactions. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1967-, Dauxois T., ed. Dynamics and thermodynamics of systems with long-range interactions. Berlin: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pedra, W. de Siqueira (Walter de Siqueira), 1975-, ed. Non-cooperative equilibria of Fermi systems with long range interactions. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International, Conference on Thermodynamics and Statistical Mechanics (23rd 2007 Genova Italy). Dynamics and thermodynamics of systems with long-range interactions: Theory and experiments : Assisi, Italy, 4-8 July 2007. Melville, N.Y: American Institute of Physics, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ruffo, S., A. Campa, T. Dauxois, and D. Fanelli. Physics of Long-Range Interacting Systems. Oxford University Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilkens, Martin, Thierry Dauxois, Stefano Ruffo, and Ennio Arimondo. Dynamics and Thermodynamics of Systems with Long Range Interactions. Springer Berlin / Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reynolds, Don R., and Jason W. Chapman. Long-range migration and orientation behavior. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797500.003.0007.

Full text
Abstract:
The dramatic long-distance flights of butterflies and other large insects, occurring near the ground, have long been regarded as migratory. In contrast, high-altitude wind-borne movements of small insects have often been viewed differently, as uncontrolled or even accidental displacements. This chapter shows how an individual-based behavioral definition provides a unifying framework for these, and other modes of migration in insects and other terrestrial arthropods, and how it can distinguish migration from other types of movement. The chapter highlights some remarkable behavioral phenomena revealed by radar, including sophisticated flight orientations shown by high-flying migrants. Migration behavior is always supported by a suite of morphological, physiological and life-history traits—together forming a ‘migration syndrome’, itself one interacting component of a ‘migration system’. These traits steer the migrants along a ‘population pathway’ through space and time, while natural selection acts contemporaneously, continually modifying behavior and other aspects of the syndrome.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Long-range interacting systems"

1

Léonard, Christian. "Some epidemic systems are long range interacting particle systems." In Stochastic Processes in Epidemic Theory, 170–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10067-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gerisch, Thomas. "Equilibrium States of Long Range Interacting Quantum Lattice Systems." In Large-Scale Molecular Systems, 351–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5940-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boers, Dave, and Martin Holthaus. "Canonical Statistics of Occupation Numbers for Ideal and Weakly Interacting Bose-Einstein Condensates." In Dynamics and Thermodynamics of Systems with Long-Range Interactions, 332–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45835-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Masi, Anna. "Spin Systems with Long Range Interactions." In From Classical to Modern Probability, 25–81. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8053-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsukerman, Igor. "Long-Range Interactions in Heterogeneous Systems." In Nanostructure Science and Technology, 285–355. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43893-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laskin, Nick. "Exciton–Phonon Dynamics with Long-Range Interaction." In Dynamical Systems and Methods, 311–22. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0454-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tokihiro, T. "Quasiperiodic Systems with Long-Range Hierarchical Interactions." In Springer Series in Solid-State Sciences, 179–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84253-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zegarlinski, Bogusław. "Random Spin Systems with Long-Range Interactions." In Mathematical Aspects of Spin Glasses and Neural Networks, 289–320. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4102-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chomaz, Philippe, and Francesca Gulminelli. "Phase Transitions in Finite Systems." In Dynamics and Thermodynamics of Systems with Long-Range Interactions, 68–129. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45835-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsallis, Constantino, Andrea Rapisarda, Vito Latora, and Fulvio Baldovin. "Nonextensivity: From Low-Dimensional Maps to Hamiltonian Systems." In Dynamics and Thermodynamics of Systems with Long-Range Interactions, 140–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45835-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Long-range interacting systems"

1

Baldovin, Fulvio, Enzo Orlandini, and Pierre-Henri Chavanis. "Long-range interacting systems and dynamical phase transitions." In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Campa, Alessandro, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "The study of the equilibrium and of the dynamical properties of long-range interacting systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mukamel, David, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Statistical Mechanics of systems with long range interactions." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giansanti, Andrea, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Thermodynamics of Small Systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Drewsen, Michael, Anders Mortensen, Esben Nielsen, Thierry Matthey, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Strongly Correlated Ion Coulomb Systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morigi, Giovanna, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Long-range interactions in cold atomic systems: A foreword." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saslaw, William C., Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Statistical Mechanics of Infinite Gravitating Systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chomaz, Philippe, Francesca Gulminelli, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Phase Transitions in Finite Systems using Information Theory." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Joyce, Michael, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Infinite self-gravitating systems and cosmological structure formation." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Labeyrie, G., G. L. Gattobigio, T. Pohl, R. Kaiser, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Long Range Interactions in Magneto-Optical Traps." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839128.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Long-range interacting systems"

1

Zhang, Duan Zhong. Stress from long-range interactions in particulate system. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1617335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Belak, James F., E. L. Pollock, J. Carpenter, S. Lustig, and T. Stouch. Massively Parallel Simulation of Large Molecular Systems with Long-Range Interactions Final Report CRADA No. TC-0297-92-B. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grumet, Rebecca, and Benjamin Raccah. Identification of Potyviral Domains Controlling Systemic Infection, Host Range and Aphid Transmission. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7695842.bard.

Full text
Abstract:
Potyviruses form one of the largest and most economically important groups of plant viruses. Individual potyviruses and their isolates vary in symptom expression, host range, and ability to overcome host resistance genes. Understanding factors influencing these biological characteristics is of agricultural importance for epidemiology and deployment of resistance strategies. Cucurbit crops are subject to severe losses by several potyviruses including the highly aggressive and variable zucchini yellow mosaic virus (ZYMV). In this project we sought to investigate protein domains in ZYMV that influence systemic infection and host range. Particular emphasis was on coat protein (CP), because of known functions in both cell to cell and long distance movement, and helper component-protease (HC-Pro), which has been implicated to play a role in symptom development and long distance movement. These two genes are also essential for aphid mediated transmission, and domains that influence disease development may also influence transmissibility. The objectives of the approved BARD project were to test roles of specific domains in the CP and HC-Pro by making sequence alterations or switches between different isolates and viruses, and testing for infectivity, host range, and aphid transmissibility. These objectives were largely achieved as described below. Finally, we also initiated new research to identify host factors interacting with potyviral proteins and demonstrated interaction between the ZYMV RNA dependent RNA polymerase and host poly-(A)-binding protein (Wang et al., in press). The focus of the CP studies (MSU) was to investigate the role of the highly variable amino terminus (NT) in host range determination and systemic infection. Hybrid ZYMV infectious clones were produced by substituting the CP-NT of ZYMV with either the CP-NT from watermelon mosaic virus (overlapping, but broader host range) or tobacco etch virus (TEV) (non- overlapping host range) (Grumet et al., 2000; Ullah ct al., in prep). Although both hybrid viruses initially established systemic infection, indicating that even the non-cucurbit adapted TEV CP-NT could facilitate long distance transport in cucurbits, after approximately 4-6, the plants inoculated with the TEV-CPNT hybrid exhibited a distinct recovery of reduced symptoms, virus titer, and virus specific protection against secondary infection. These results suggest that the plant recognizes the presence of the TEV CP-NT, which has not been adapted to infection of cucurbits, and initiates defense responses. The CP-NT also appears to play a role in naturally occurring resistance conferred by the zym locus in the cucumber line 'Dina-1'. Patterns of virus accumulation indicated that expression of resistance is developmentally controlled and is due to a block in virus movement. Switches between the core and NT domains of ZYMV-NAA (does not cause veinal chlorosis on 'Dina-1'), and ZYMV-Ct (causes veinal chlorosis), indicated that the resistance response likely involves interaction with the CP-NT (Ullah and Grumet, submitted). At the Volcani Center the main thrust was to identify domains in the HC-Pro that affect symptom expression or aphid transmissibility. From the data reported in the first and second year report and in the attached publications (Peng et al. 1998; Kadouri et al. 1998; Raccah et al. 2000: it was shown that: 1. The mutation from PTK to PAK resulted in milder symptoms of the virus on squash, 2. Two mutations, PAK and ATK, resulted in total loss of helper activity, 3. It was established for the first time that the PTK domain is involved in binding of the HC-Pro to the potyvirus particle, and 4. Some of these experiments required greater amount of HC-Pro, therefore a simpler and more efficient purification method was developed based on Ni2+ resin.
APA, Harvard, Vancouver, ISO, and other styles
4

Chejanovsky, Nor, and Suzanne M. Thiem. Isolation of Baculoviruses with Expanded Spectrum of Action against Lepidopteran Pests. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7586457.bard.

Full text
Abstract:
Our long-term goal is to learn to control (expand and restrict) the host range of baculoviruses. In this project our aim was to expand the host range of the prototype baculovirus Autographa cali/arnica nuclear polyhedrosis virus (AcMNPV) towards American and Israeli pests. To achieve this objective we studied AcMNPV infection in the non-permissive hosts L. dispar and s. littoralis (Ld652Y and SL2 cells, respectively) as a model system and the major barriers to viral replication. We isolated recombinant baculoviruses with expanded infectivity towards L. dispar and S. littoralis and tested their infectivity towards other Lepidopteran pests. The restricted host range displayed by baculoviruses constitutes an obstacle to their further implementation in the control of diverse Lepidopteran pests, increasing the development costs. Our work points out that cellular defenses are major role blocks to AcMNPV replication in non- and semi-permissive hosts. Therefore a major determinant ofbaculovirus host range is the ability of the virus to effectively counter cellular defenses of host cells. This is exemplified by our findings showing tliat expressing the viral gene Ldhrf-l overcomes global translation arrest in AcMNPV -infected Ld652Y cells. Our data suggests that Ld652Y cells have two anti-viral defense pathways, because they are subject to global translation arrest when infected with AcMNPV carrying a baculovirus apoptotic suppressor (e.g., wild type AcMNPV carryingp35, or recombinant AcMNPV carrying Opiap, Cpiap. or p49 genes) but apoptose when infected with AcMNPV-Iacking a functional apoptotic suppressor. We have yet to elucidate how hrf-l precludes the translation arrest mechanism(s) in AcMNPV-infected Ld652Y cells. Ribosomal profiles of AcMNPV infected Ld652Y cells suggested that translation initiation is a major control point, but we were unable to rule-out a contribution from a block in translation elongation. Phosphorylation of eIF-2a did not appear to playa role in AcMNPV -induced translation arrest. Mutagenesis studies ofhrf-l suggest that a highly acidic domain plays a role in precluding translation arrest. Our findings indicate that translation arrest may be linked to apoptosis either through common sensors of virus infection or as a consequence of late events in the virus life-cycle that occur only if apoptosis is suppressed. ~ AcMNPV replicates poorly in SL2 cells and induces apoptosis. Our studies in AcMNPV - infected SL2ceils led us to conclude that the steady-state levels of lEI (product of the iel gene, major AcMNPV -transactivator and multifunctional protein) relative to those of the immediate early viral protein lEO, playa critical role in regulating the viral infection. By increasing the IEl\IEO ratio we achieved AcMNPV replication in S. littoralis and we were able to isolate recombinant AcMNPV s that replicated efficiently in S. lifforalis cells and larvae. Our data that indicated that AcMNPV - infection may be regulated by an interaction between IE 1 and lED (of previously unknown function). Indeed, we showed that IE 1 associates with lED by using protein "pull down" and immunoprecipitation approaches High steady state levels of "functional" IE 1 resulted in increased expression of the apoptosis suppressor p35 facilitating AcMNPV -replication in SL2 cells. Finally, we determined that lED accelerates the viral infection in AcMNPV -permissive cells. Our results show that expressing viral genes that are able to overcome the insect-pest defense system enable to expand baculovirus host range. Scientifically, this project highlights the need to further study the anti-viral defenses of invertebrates not only to maximi~e the possibilities for manipulating baculovirus genomes, but to better understand the evolutionary underpinnings of the immune systems of vertebrates towards virus infection.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography