Journal articles on the topic 'Long range displacement sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Long range displacement sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alonso-Murias, Monserrat C., David Monzón-Hernández, Osvaldo Rodríguez-Quiroz, J. Enrique Antonio-Lopez, Axel Schülzgen, Rodrigo Amezcua-Correa, and Joel Villatoro. "Long-range multicore optical fiber displacement sensor." Optics Letters 46, no. 9 (April 30, 2021): 2224. http://dx.doi.org/10.1364/ol.421004.
Full textXue, Songtao, Kang Jiang, Shuai Guan, Liyu Xie, Guochun Wan, and Chunfeng Wan. "Long-Range Displacement Meters Based on Chipped Circular Patch Antenna." Sensors 20, no. 17 (August 28, 2020): 4884. http://dx.doi.org/10.3390/s20174884.
Full textKhiat, Ali. "Silicon grating microfabrication for long-range displacement sensor." Journal of Micro/Nanolithography, MEMS, and MOEMS 7, no. 2 (April 1, 2008): 021007. http://dx.doi.org/10.1117/1.2909459.
Full textBonse, M. H. W., F. Zhu, and H. F. van Beek. "A long-range capacitive displacement sensor having micrometre resolution." Measurement Science and Technology 4, no. 8 (August 1, 1993): 801–7. http://dx.doi.org/10.1088/0957-0233/4/8/001.
Full textThomas, Jineesh, T. R. Rajanna, and Sundarrajan Asokan. "Temperature Compensated FBG Displacement Sensor for Long-Range Applications." IEEE Sensors Letters 4, no. 1 (January 2020): 1–4. http://dx.doi.org/10.1109/lsens.2019.2959377.
Full textHu, Ye, Qian Hui Zhao, Yong Ming Chen, and Lei Wang. "A Simple and Long-Range Displacement Measurement System." Applied Mechanics and Materials 341-342 (July 2013): 839–42. http://dx.doi.org/10.4028/www.scientific.net/amm.341-342.839.
Full textYu, Jian-ping, Wen Wang, Ke-qing Lu, De-qing Mei, and Zi-chen Chen. "A planar capacitive sensor for 2D long-range displacement measurement." Journal of Zhejiang University SCIENCE C 14, no. 4 (April 2013): 252–57. http://dx.doi.org/10.1631/jzus.c12mnt03.
Full textLiu, Rong Xian, Yong Fa Qin, and Fan Li. "The Research of the Shock Angular Displacement Sensor." Applied Mechanics and Materials 427-429 (September 2013): 1060–63. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.1060.
Full textKim, Moo-Jin, and Won-Kyu Moon. "A new capacitive displacement sensor for high accuracy and long range." Journal of Sensor Science and Technology 14, no. 4 (July 30, 2005): 219–24. http://dx.doi.org/10.5369/jsst.2005.14.4.219.
Full textKim, Moojin, Wonkyu Moon, Euisung Yoon, and Kwang-Ryeol Lee. "A new capacitive displacement sensor with high accuracy and long-range." Sensors and Actuators A: Physical 130-131 (August 2006): 135–41. http://dx.doi.org/10.1016/j.sna.2005.12.012.
Full textLiu, Xiaokang, Kai Peng, Ziran Chen, Hongji Pu, and Zhicheng Yu. "A New Capacitive Displacement Sensor With Nanometer Accuracy and Long Range." IEEE Sensors Journal 16, no. 8 (April 2016): 2306–16. http://dx.doi.org/10.1109/jsen.2016.2521681.
Full textArifin, A., A. M. Hatta, Sekartedjo, M. S. Muntini, and A. Rubiyanto. "Long-range displacement sensor based on SMS fiber structure and OTDR." Photonic Sensors 5, no. 2 (February 7, 2015): 166–71. http://dx.doi.org/10.1007/s13320-015-0225-4.
Full textYu, Haoyu, Xiaolong Chen, Jinsong Zhan, and Zhaoxiang Chen. "A Long-Range High Applicability Length Comparator for Linear Displacement Sensor Calibration." IEEE Transactions on Instrumentation and Measurement 70 (2021): 1–10. http://dx.doi.org/10.1109/tim.2020.3011795.
Full textHong, Yifan, Ryo Sato, Yuki Shimizu, Hiraku Matsukuma, and Wei Gao. "A New Optical Configuration for the Surface Encoder with an Expanded Z-Directional Measuring Range." Sensors 22, no. 8 (April 14, 2022): 3010. http://dx.doi.org/10.3390/s22083010.
Full textFukushige, Takashi, Takehiko Hayashi, Seiichi Hata, and Akira Shimokohbe. "Built-in Capacitive Displacement Sensor with Long Full-Scale Range for Electrostatic Microactuators." IEEJ Transactions on Sensors and Micromachines 126, no. 9 (2006): 522–27. http://dx.doi.org/10.1541/ieejsmas.126.522.
Full textChen, Ziran, Hongji Pu, Xiaokang Liu, Donglin Peng, and Zhicheng Yu. "A Time-Grating Sensor for Displacement Measurement With Long Range and Nanometer Accuracy." IEEE Transactions on Instrumentation and Measurement 64, no. 11 (November 2015): 3105–15. http://dx.doi.org/10.1109/tim.2015.2437633.
Full textJeong, D. H., Hyun Kyu Kweon, and Y. S. Kim. "Development of the Precision Stage with Nanometer Accuracy and a Millimeter Dynamic Range." Key Engineering Materials 381-382 (June 2008): 47–48. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.47.
Full textKrakover, Naftaly, B. Robert Ilic, and Slava Krylov. "Micromechanical resonant cantilever sensors actuated by fringing electrostatic fields." Journal of Micromechanics and Microengineering 32, no. 5 (March 17, 2022): 054001. http://dx.doi.org/10.1088/1361-6439/ac5a61.
Full textZhang, Hong, You Ping Liu, Jian Hua Li, and Mao Dong Xiong. "The Study and Applications on Fiber Bragg Grating (FBG) Monitoring System for Deep and Large Deformed Soft Ground." Advanced Materials Research 261-263 (May 2011): 1341–47. http://dx.doi.org/10.4028/www.scientific.net/amr.261-263.1341.
Full textPrelle, Christine, Frédéric Lamarque, and Philippe Revel. "Reflective optical sensor for long-range and high-resolution displacements." Sensors and Actuators A: Physical 127, no. 1 (February 2006): 139–46. http://dx.doi.org/10.1016/j.sna.2005.11.005.
Full textXue, Songtao, Zhiquan Zheng, Shuai Guan, Liyu Xie, Guochun Wan, and Chunfeng Wan. "A Capacitively-Fed Inverted-F Antenna for Displacement Detection in Structural Health Monitoring." Sensors 20, no. 18 (September 17, 2020): 5310. http://dx.doi.org/10.3390/s20185310.
Full textYu, Zhicheng, Kai Peng, Xiaokang Liu, Hongji Pu, and Ziran Chen. "A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating." Measurement Science and Technology 29, no. 5 (April 10, 2018): 054009. http://dx.doi.org/10.1088/1361-6501/aaaf05.
Full textCheong, Yong Moo, Shin Kim, and Hyun Kyu Jung. "Application of Magnetostrictive Transducer for the Long-Range Guided Wave Inspection." Key Engineering Materials 345-346 (August 2007): 1295–98. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1295.
Full textPeng, Kai, Xiaokang Liu, Ziran Chen, Zhicheng Yu, and Hongji Pu. "Sensing Mechanism and Error Analysis of a Capacitive Long-Range Displacement Nanometer Sensor Based on Time Grating." IEEE Sensors Journal 17, no. 6 (March 15, 2017): 1596–607. http://dx.doi.org/10.1109/jsen.2017.2654500.
Full textDahmen, Nikolaj, Roland Hohensinn, and John Clinton. "Comparison and Combination of GNSS and Strong-Motion Observations: A Case Study of the 2016 Mw 7.0 Kumamoto Earthquake." Bulletin of the Seismological Society of America 110, no. 6 (August 18, 2020): 2647–60. http://dx.doi.org/10.1785/0120200135.
Full textMonzel, Christian, and Gottfried Unden. "Transmembrane signaling in the sensor kinase DcuS ofEscherichia coli: A long-range piston-type displacement of transmembrane helix 2." Proceedings of the National Academy of Sciences 112, no. 35 (August 17, 2015): 11042–47. http://dx.doi.org/10.1073/pnas.1507217112.
Full textLiu, Xiaokang, Hui Zhang, Kai Peng, Qifu Tang, and Ziran Chen. "A High Precision Capacitive Linear Displacement Sensor with Time-Grating that Provides Absolute Positioning Capability Based on a Vernier-Type Structure." Applied Sciences 8, no. 12 (November 28, 2018): 2419. http://dx.doi.org/10.3390/app8122419.
Full textLim, Jae-In, Seung-Hwan Kim, Seoung-Hun Lee, Hae-Won Jeong, Min-Hee Lee, Shung-Whan Kim, and Kyong-Hon Kim. "Optical System Design and Experimental Demonstration of Long-range Reflective-type Precision Displacement Sensors." Korean Journal of Optics and Photonics 22, no. 3 (June 25, 2011): 151–58. http://dx.doi.org/10.3807/kjop.2011.22.3.151.
Full textRasouli, Saifollah, and Mostafa Shahmohammadi. "Portable and long-range displacement and vibration sensor that chases moving moiré fringes using the three-point intensity detection method." OSA Continuum 1, no. 3 (November 12, 2018): 1012. http://dx.doi.org/10.1364/osac.1.001012.
Full textLi, Jicheng, H. Neumann, and R. Ramalingam. "Design, fabrication, and testing of fiber Bragg grating sensors for cryogenic long-range displacement measurement." Cryogenics 68 (June 2015): 36–43. http://dx.doi.org/10.1016/j.cryogenics.2015.02.002.
Full textKirschel, Alexander N. G., Nathalie Seddon, and Joseph A. Tobias. "Range-wide spatial mapping reveals convergent character displacement of bird song." Proceedings of the Royal Society B: Biological Sciences 286, no. 1902 (May 2019): 20190443. http://dx.doi.org/10.1098/rspb.2019.0443.
Full textSokol-Kutylovskii, Oleg. "Nonlinear amplification of the magnetic induction signal in a magnetomodulation sensor with an amorphous ferromagnetic core." Izvestiya VUZ. Applied Nonlinear Dynamics 30, no. 2 (March 31, 2022): 233–38. http://dx.doi.org/10.18500/0869-6632-2022-30-2-233-238.
Full textAl-Handarish, Yousef, Olatunji Mumini Omisore, Jing Chen, Xiuqi Cao, Toluwanimi Oluwadara Akinyemi, Yan Yan, and Lei Wang. "A Hybrid Microstructure Piezoresistive Sensor with Machine Learning Approach for Gesture Recognition." Applied Sciences 11, no. 16 (August 6, 2021): 7264. http://dx.doi.org/10.3390/app11167264.
Full textNgeljaratan, Luna, and Mohamed A. Moustafa. "Implementation and Evaluation of Vision-Based Sensor Image Compression for Close-Range Photogrammetry and Structural Health Monitoring." Sensors 20, no. 23 (November 30, 2020): 6844. http://dx.doi.org/10.3390/s20236844.
Full textLu, Hong, S. C. Choi, S. M. Lee, C. H. Park, and D. W. Lee. "Development of a Magnified Mechanism for Fast Tool Servo System." Key Engineering Materials 516 (June 2012): 317–20. http://dx.doi.org/10.4028/www.scientific.net/kem.516.317.
Full textShimizu, Hiroki, Takahiro Akiyoshi, Shinya Yanagihara, Yuuma Tamaru, and Akiyoshi Baba. "A Novel MEMS Device for Scanning Profile Measurement with Three Cantilever Displacement Sensors." Applied Mechanics and Materials 870 (September 2017): 237–42. http://dx.doi.org/10.4028/www.scientific.net/amm.870.237.
Full textJolliff, Jason K., M. David Lewis, Sherwin Ladner, and Richard L. Crout. "Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data." Sensors 19, no. 18 (September 10, 2019): 3900. http://dx.doi.org/10.3390/s19183900.
Full textKuras, Przemysław, Łukasz Ortyl, Tomasz Owerko, Marek Salamak, and Piotr Łaziński. "GB-SAR in the Diagnosis of Critical City Infrastructure—A Case Study of a Load Test on the Long Tram Extradosed Bridge." Remote Sensing 12, no. 20 (October 15, 2020): 3361. http://dx.doi.org/10.3390/rs12203361.
Full textAnstis, Stuart M., and George Mather. "Effects of Luminance and Contrast on Direction of Ambiguous Apparent Motion." Perception 14, no. 2 (April 1985): 167–79. http://dx.doi.org/10.1068/p140167.
Full textDaul, Lars, Tao Jin, Ingo Busch, and Ludger Koenders. "Influence of Geometric Properties of Capacitive Sensors on Slope Error and Nonlinearity of Displacement Measurements." Sensors 21, no. 13 (June 22, 2021): 4270. http://dx.doi.org/10.3390/s21134270.
Full textChen, Chia-Wei, Matthias Hartrumpf, Thomas Längle, and Jürgen Beyerer. "Sensitivity enhanced roll-angle sensor by means of a quarter-waveplate." tm - Technisches Messen 88, s1 (August 24, 2021): s48—s52. http://dx.doi.org/10.1515/teme-2021-0069.
Full textWang, Shutang, Minghui He, Bingjuan Weng, Lihui Gan, Yingru Zhao, Ning Li, and Yannan Xie. "Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing." Nanomaterials 8, no. 9 (August 24, 2018): 657. http://dx.doi.org/10.3390/nano8090657.
Full textOmidalizarandi, M., I. Neumann, E. Kemkes, B. Kargoll, D. Diener, J. Rüffer, and J. A. Paffenholz. "MEMS BASED BRIDGE MONITORING SUPPORTED BY IMAGE-ASSISTED TOTAL STATION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W18 (October 18, 2019): 833–42. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-833-2019.
Full textHer, Shiuh Chuan, and Bo Ren Yao. "Stress Analysis of Optical Fiber Sensor Embedded Composite Subjected to Tri-Axial Normal Loadings." Key Engineering Materials 364-366 (December 2007): 998–1002. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.998.
Full textDing, Guo Qing, Xin Chen, Hong Wang, Li Hua Lei, and Yuan Li. "Quantitative Analysis of Lateral Setting Error in Two-Point Method." Advanced Materials Research 690-693 (May 2013): 3235–39. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.3235.
Full textHu, Jie, Zhongli Wu, Xiongzhen Qin, Huangzheng Geng, and Zhangbin Gao. "An Extended Kalman Filter and Back Propagation Neural Network Algorithm Positioning Method Based on Anti-lock Brake Sensor and Global Navigation Satellite System Information." Sensors 18, no. 9 (August 21, 2018): 2753. http://dx.doi.org/10.3390/s18092753.
Full textFöhn, Paul M. B., Christian Camponovo, and Georges Krüsi. "Mechanical and structural properties of weak snow layers measured in situ." Annals of Glaciology 26 (1998): 1–6. http://dx.doi.org/10.3189/1998aog26-1-1-6.
Full textFöhn, Paul M. B., Christian Camponovo, and Georges Krüsi. "Mechanical and structural properties of weak snow layers measured in situ." Annals of Glaciology 26 (1998): 1–6. http://dx.doi.org/10.1017/s0260305500014440.
Full textLucas, Carlos, Daniel Hernández-Sosa, David Greiner, Aleš Zamuda, and Rui Caldeira. "An Approach to Multi-Objective Path Planning Optimization for Underwater Gliders." Sensors 19, no. 24 (December 13, 2019): 5506. http://dx.doi.org/10.3390/s19245506.
Full textMilenkovic, Nevena, Christiane Wetzel, Rabih Moshourab, and Gary R. Lewin. "Speed and Temperature Dependences of Mechanotransduction in Afferent Fibers Recorded From the Mouse Saphenous Nerve." Journal of Neurophysiology 100, no. 5 (November 2008): 2771–83. http://dx.doi.org/10.1152/jn.90799.2008.
Full text