Academic literature on the topic 'Logarithmic Sobolev spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Logarithmic Sobolev spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Logarithmic Sobolev spaces"
Ghobber, Saifallah, and Hatem Mejjaoli. "Logarithm Sobolev and Shannon’s Inequalities Associated with the Deformed Fourier Transform and Applications." Symmetry 14, no. 7 (June 24, 2022): 1311. http://dx.doi.org/10.3390/sym14071311.
Full textMarton, Katalin. "Logarithmic Sobolev inequalities in discrete product spaces." Combinatorics, Probability and Computing 28, no. 06 (June 13, 2019): 919–35. http://dx.doi.org/10.1017/s0963548319000099.
Full textChaabane, Slim, and Imed Feki. "Optimal logarithmic estimates in Hardy–Sobolev spaces." Comptes Rendus Mathematique 347, no. 17-18 (September 2009): 1001–6. http://dx.doi.org/10.1016/j.crma.2009.07.018.
Full textEdmunds, D. E., and H. Triebel. "Logarithmic Sobolev Spaces and Their Applications to Spectral Theory." Proceedings of the London Mathematical Society s3-71, no. 2 (September 1995): 333–71. http://dx.doi.org/10.1112/plms/s3-71.2.333.
Full textHsu, Elton P. "Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds." Communications in Mathematical Physics 189, no. 1 (October 1, 1997): 9–16. http://dx.doi.org/10.1007/s002200050188.
Full textGressman, Philip T. "Fractional Poincaré and logarithmic Sobolev inequalities for measure spaces." Journal of Functional Analysis 265, no. 6 (September 2013): 867–89. http://dx.doi.org/10.1016/j.jfa.2013.05.036.
Full textIbrahim, H. "A Generalization of a Logarithmic Sobolev Inequality to the Hölder Class." Journal of Function Spaces and Applications 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/148706.
Full textEhler, Martin, Manuel Gräf, and Chris J. Oates. "Optimal Monte Carlo integration on closed manifolds." Statistics and Computing 29, no. 6 (October 30, 2019): 1203–14. http://dx.doi.org/10.1007/s11222-019-09894-w.
Full textAouaoui, Sami, and Rahma Jlel. "A new Singular Trudinger–Moser Type Inequality with Logarithmic Weights and Applications." Advanced Nonlinear Studies 20, no. 1 (February 1, 2020): 113–39. http://dx.doi.org/10.1515/ans-2019-2068.
Full textMachihara, Shuji, Tohru Ozawa, and Hidemitsu Wadade. "Generalizations of the logarithmic Hardy inequality in critical Sobolev-Lorentz spaces." Journal of Inequalities and Applications 2013, no. 1 (2013): 381. http://dx.doi.org/10.1186/1029-242x-2013-381.
Full textDissertations / Theses on the topic "Logarithmic Sobolev spaces"
Park, Young Ja. "Sobolev trace inequality and logarithmic Sobolev trace inequality." Digital version:, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p9992883.
Full textInahama, Yuzuru. "Logarithmic Sobolev Inequality on Free Loop Groups for Heat Ker-nel Measures Associated with the General Sobolev Spaces." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/150808.
Full textΤαβουλάρης, Νικόλαος Κ. "Ανισότητες Sobolev και εφαρμογές." 2004. http://nemertes.lis.upatras.gr/jspui/handle/10889/249.
Full textBook chapters on the topic "Logarithmic Sobolev spaces"
Üstünel, A. S. "Damped Logarithmic Sobolev Inequality on the Wiener Space." In Stochastic Analysis and Related Topics VII, 245–49. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0157-1_11.
Full textEldan, Ronen, and Michel Ledoux. "A Dimension-Free Reverse Logarithmic Sobolev Inequality for Low-Complexity Functions in Gaussian Space." In Lecture Notes in Mathematics, 263–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36020-7_12.
Full text