Academic literature on the topic 'Locally convex topological vector space'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locally convex topological vector space.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Locally convex topological vector space"
Muller, M. A. "Bornologiese pseudotopologiese vektorruimtes." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 9, no. 1 (July 5, 1990): 15–18. http://dx.doi.org/10.4102/satnt.v9i1.434.
Full textGabriyelyan, Saak S., and Sidney A. Morris. "Free Subspaces of Free Locally Convex Spaces." Journal of Function Spaces 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/2924863.
Full textPark, Sehie. "Best approximation theorems for composites of upper semicontinuous maps." Bulletin of the Australian Mathematical Society 51, no. 2 (April 1995): 263–72. http://dx.doi.org/10.1017/s000497270001409x.
Full textRobertson, W. J., S. A. Saxon, and A. P. Robertson. "Barrelled spaces and dense vector subspaces." Bulletin of the Australian Mathematical Society 37, no. 3 (June 1988): 383–88. http://dx.doi.org/10.1017/s0004972700027003.
Full textDE BEER, RICHARD J. "TAUBERIAN THEOREMS AND SPECTRAL THEORY IN TOPOLOGICAL VECTOR SPACES." Glasgow Mathematical Journal 55, no. 3 (February 25, 2013): 511–32. http://dx.doi.org/10.1017/s0017089512000699.
Full textRobertson, Neill. "Extending Edgar's ordering to locally convex spaces." Glasgow Mathematical Journal 34, no. 2 (May 1992): 175–88. http://dx.doi.org/10.1017/s0017089500008697.
Full textGlöckner, Helge. "Aspects of Differential Calculus Related to Infinite-Dimensional Vector Bundles and Poisson Vector Spaces." Axioms 11, no. 5 (May 9, 2022): 221. http://dx.doi.org/10.3390/axioms11050221.
Full textKhan, Liaqat Ali, and Saud M. Alsulami. "Asymptotic Almost Periodic Functions with Range in a Topological Vector Space." Journal of Function Spaces and Applications 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/965746.
Full textGarcía-Pacheco, Francisco Javier, Soledad Moreno-Pulido, Enrique Naranjo-Guerra, and Alberto Sánchez-Alzola. "Non-Linear Inner Structure of Topological Vector Spaces." Mathematics 9, no. 5 (February 25, 2021): 466. http://dx.doi.org/10.3390/math9050466.
Full textMaza, Rodolfo Erodias, and Sergio Rosales Canoy, Jr. "Denjoy-type Integrals in Locally Convex Topological Vector Space." European Journal of Pure and Applied Mathematics 14, no. 4 (November 10, 2021): 1169–83. http://dx.doi.org/10.29020/nybg.ejpam.v14i4.4115.
Full textDissertations / Theses on the topic "Locally convex topological vector space"
Vera, Mendoza Rigoberto. "Linear operations on locally convex topological vector spaces." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186699.
Full textGriesan, Raymond William. "Nabla spaces, the theory of the locally convex topologies (2-norms, etc.) which arise from the mensuration of triangles." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184510.
Full textCavalcante, Wasthenny Vasconcelos. "Espaços Vetoriais Topológicos." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9277.
Full textMade available in DSpace on 2017-08-17T14:00:23Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1661057 bytes, checksum: 913a7f671e2e028b60d14a02274f932a (MD5) Previous issue date: 2015-02-27
In this work we investigate the concept of topological vector spaces and their properties. In the rst chapter we present two sections of basic results and in the other sections we present a more general study of such spaces. In the second chapter we restrict ourselves to the real scalar eld and we study, in the context of locally convex spaces, the Hahn-Banach and Banach-Alaoglu theorems. We also build the weak, weak-star, of bounded convergence and of pointwise convergence topologies. Finally we investigate the Theorem of Banach-Steinhauss, the Open Mapping Theorem and the Closed Graph Theorem.
Neste trabalho, estudamos o conceito de espa cos vetoriais topol ogicos e suas propriedades. No primeiro cap tulo, apresentamos duas se c~oes de resultados b asicos e, nas demais se c~oes, apresentamos um estudo sobre tais espa cos de forma mais ampla. No segundo cap tulo, restringimo-nos ao corpo dos reais e fazemos um estudo sobre os espa cos localmente convexos, o Teorema de Hahn-Banach, o Teorema de Banach- Alaoglu, constru mos as topologias fraca, fraca-estrela, da converg^encia limitada e da converg^encia pontual. Por ultimo, estudamos o Teorema da Limita c~ao Uniforme, o Teorema do Gr a co Fechado e o da Aplica c~ao Aberta no contexto mais geral dos espa cos de Fr echet.
Baratov, Rishat. "Efficient conic decomposition and projection onto a cone in a Banach ordered space." Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/61401.
Full textSehgal, Kriti. "Duality for Spaces of Holomorphic Functions into a Locally Convex Topological Vector Space." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4913.
Full textHelmstedt, Janet Margaret. "Closed graph theorems for locally convex topological vector spaces." Thesis, 2015. http://hdl.handle.net/10539/18010.
Full textLet 4 be the class of pairs of loc ..My onvex spaces (X,V) “h ‘ch are such that every closed graph linear ,pp, 1 from X into V is continuous. It B is any class of locally . ivex l.ausdortf spaces. let & w . (X . (X.Y) e 4 for ,11 Y E B). " ‘his expository dissertation, * (B) is investigated, firstly i r arbitrary B . secondly when B is the class of C,-complete paces and thirdly whon B is a class of locally convex webbed s- .ces
Venter, Rudolf Gerrit. "Measures and functions in locally convex spaces." Thesis, 2010. http://hdl.handle.net/2263/26547.
Full textThesis (PhD(Mathematics))--University of Pretoria, 2010.
Mathematics and Applied Mathematics
unrestricted
Tshilombo, Mukinayi Hermenegilde. "Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces." Thesis, 2015. http://hdl.handle.net/10500/19942.
Full textMathematical Sciences
D. Phil. (Mathematics)
Book chapters on the topic "Locally convex topological vector space"
Bourbaki, Nicolas. "Convex sets and locally convex spaces." In Topological Vector Spaces, 31–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_2.
Full textSchaefer, H. H., and M. P. Wolff. "Locally Convex Topological Vector Spaces." In Topological Vector Spaces, 36–72. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_3.
Full textAlpay, Daniel. "Locally Convex Topological Vector Spaces." In An Advanced Complex Analysis Problem Book, 249–83. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16059-7_5.
Full textGong, Xun Hua, Wan Tao Fu, and Wei Liu. "Super Efficiency for a Vector Equilibrium in Locally Convex Topological Vector Spaces." In Vector Variational Inequalities and Vector Equilibria, 233–52. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0299-5_13.
Full textMorales, Pedro. "Properties of the set of global solutions for the cauchy problems in a locally convex topological vector space." In Ordinary and Partial Differential Equations, 276–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074736.
Full text"Locally Convex Spaces and Seminorms." In Topological Vector Spaces, 133–72. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584888673-8.
Full textWong, Yau-Chuen. "Normed Spaces Associated with a Locally Convex Space." In Introductory Theory of Topological Vector Spaces, 162–69. CRC Press, 2019. http://dx.doi.org/10.1201/9780203749807-10.
Full textWong, Yau-Chuen. "The Bornological Space Associated with a Locally Convex Space." In Introductory Theory of Topological Vector Spaces, 175–79. CRC Press, 2019. http://dx.doi.org/10.1201/9780203749807-12.
Full textWong, Yau-Chuen. "von Neumann Bornologies and Locally Convex Topologies Determined by Convex Bornologies." In Introductory Theory of Topological Vector Spaces, 198–204. CRC Press, 2019. http://dx.doi.org/10.1201/9780203749807-15.
Full text"Deformations on locally convex topological vector spaces." In Interdisciplinary Mathematical Sciences, 15–24. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709639_0003.
Full textConference papers on the topic "Locally convex topological vector space"
Kraus, Eugene J., Henk J. A. M. Heijmans, and Edward R. Dougherty. "Spatial-scaling-compatible morphological granulometries on locally convex topological vector spaces." In San Diego '92, edited by Paul D. Gader, Edward R. Dougherty, and Jean C. Serra. SPIE, 1992. http://dx.doi.org/10.1117/12.60649.
Full textTsertos, Yannis. "On A-convex and lm-convex algebra structures of a locally convex space." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-32.
Full text